Главная - Канализация
Ранговый коэффициент корреляции. Коэффициент корреляции Спирмена. Коэффициент ранговой корреляции Спирмена

This calculator below calculates Spearman"s rank correlation coefficient between two random variables. The theoretical part is traditional below the calculator.

add import_export mode_edit delete

Changes of random variables

arrow_upward arrow_downward arrow_upward arrow_downward
Items per page: 5 10 20 50 100 chevron_left chevron_right

Changes of random variables

Import data Import error

"One of the following characters is used to separate data fields: tab, semicolon (;) or comma(,)" Sample: -50.5;-50.5

Import Back Cancel

Digits after the decimal point: 4

Calculate

Spearman"s correlation coefficient

Save share extension

The method of Spearman"s rank correlation coefficient calculation is actually pretty simple. It"s like the Pearson correlation coefficient , but designed not for measurements of random variables only but for their ranking values .

We have only to understand what is the rank value and why all this is necessary.

If the elements of a variational series arranged in ascending or descending order, that rank of the element will be his number in ordered series.

For example, we have a variational series {17,26,5,14,21}. Let"s sort it"s elements in a descending order {26,21,17,14,5}. 26 has a rank of 1, 21 - rank of 2 and so on, Variational series of ranking values will look like this {3,1,5,4,2}.

I.e. when calculating Spearman"s coefficient initial variation series are converted into variational series of ranking values and then Pearson"s formula is applied to them.
.
There is one subtlety - the rank of the repeating values is taken as the average of the ranks. That is, for a series {17, 15, 14, 15}ranking series will look like {1, 2.5, 4, 2.5}, as the first element is 15 has a rank of 2, and the second - rank of 3, and.

If you don"t have the repeating values, that is, all the values of ranking series - the numbers between 1 and n, the Pearson"s formula can be simplified to

By the way, this formula is often given as the formula for calculating the Spearman"s coefficient.

What is the essence of the transition from the values themselves to their rank value?
When investigating the correlation of ranking values you can find how well the dependence of the two variables is described by a monotonic function.

The sign of the coefficient indicates the direction of the relationship between variables. If the sign is positive the values of Y has a tendency to increase with the increasement of X. If the sign is negative the values of Y has a tendency to decrease with the increasement of X. If the coefficient is 0 there is no tendency then. If the coefficient equals 1 or -1, the relationship between X and Y has an appearance of monotonic function, i.e. with the increasement of X, Y also increases and vice versa.

That is, unlike the Pearson"s correlation coefficient, which can detect only the linear relationship of one variable from another, Spearman"s correlation coefficient can detect monotonic dependence, where the direct linear relationship cannot be revealed.

Here"s an example.
Поясню на примере. Let"s suppose,we examine the function y=10/x.
We have the following measurements of X and Y
{{1,10}, {5,2}, {10,1}, {20,0.5}, {100,0.1}}
For this data, Pearson correlation coefficient is equal to -0.4686, i.e. the relationship is weak or absent. And Spearman"s correlation coefficient is strictly equal to -1, as if it"s hints to the researcher that Y has strongly negative monotonic dependence from X.

Назначение рангового коэффициента корреляции

Метод ранговой корреляции Спирмена позволяет определить тес­ноту (силу) и направление корреляционной связи между двумя призна­ками или двумя профилями {иерархиями) признаков.

Описание метода

Для подсчета ранговой корреляции необходимо располагать двумя рядами значений, которые могут быть проранжированы. Такими рядами значений могут быть:

1) два признака, измеренные в одной и той же группе испытуемых;

2) две индивидуальные иерархии признаков, выявленные у двух испы­туемых по одному и тому же набору признаков (например, личност­ные профили по 16-факторному опроснику Р. Б. Кеттелла, иерархии ценностей по методике Р. Рокича, последовательности предпочтений в выборе из нескольких альтернатив и др.);

3) две групповые иерархии признаков;

4) индивидуальная и групповая иерархии признаков.

Вначале показатели ранжируются отдельно по каждому из признаков. Как правило, меньшему значению признака начисляется меньший ранг.

Рассмотрим случай 1 (два признака). Здесь ранжируются ин­дивидуальные значения по первому признаку, полученные разными ис­пытуемыми, а затем индивидуальные значения по второму признаку.

Если два признака связаны положительно, то испытуемые, имею­щие низкие ранги по одному из них, будут иметь низкие ранги и по другому, а испытуемые, имеющие высокие ранги по одному из призна­ков, будут иметь по другому признаку также высокие ранги. Для под­счета r s необходимо определить разности (d) между рангами, получен­ными данным испытуемым по обоим признакам. Затем эти показатели d определенным образом преобразуются и вычитаются из 1. Чем меньше разности между рангами, тем больше будет r s , тем ближе он будет к +1.

Если корреляция отсутствует, то все ранги будут перемешаны и между ними не будет никакого соответствия. Формула составлена так, что вэтом случае r s , окажется близким к 0.

В случае отрицательной корреляции низким рангам испытуемых по одному признаку будут соответствовать высокие ранги по другому признаку, и наоборот.

Чем больше несовпадение между рангами испытуемых по двумя переменным, тем ближе r s к -1.

Рассмотрим случай 2 (два индивидуальных профиля). Здесь ранжируются индивидуальные значения, полученные каждым из 2-х испытуемым по определенному (одинаковому для них обоих) набору признаков. Первый ранг получит признак с самым низким значением; второй ранг - признак с более высоким значением и т.д. Очевидно, что все признаки должны быть измерены в одних и тех же единицах, иначе ранжирование невозможно. Например, невозможно проранжировать показатели по личностному опроснику Кеттелла (16PF ), если они вы­ражены в "сырых" баллах, поскольку по разным факторам диапазоны значений различны: от 0 до 13, от 0 до 20 и от 0 до 26. Мы не мо­жем сказать, какой из факторов будет занимать первое место по выра­женности, пока не приведем все значения к единой шкале (чаще всего это шкала стенов).

Если индивидуальные иерархии двух испытуемых связаны поло­жительно, то признаки, имеющие низкие ранги у одного из них, будут иметь низкие ранги и у другого, и наоборот. Например, если у одного испытуемого фактор Е (доминантность) имеет самый низкий ранг, то иу другого испытуемого он должен иметь низкий ранг, если у одного испытуемого фактор С (эмоциональная устойчивость) имеет высший ранг, то и другой испытуемый должен иметь по этому фактору высокий ранг и т.д.

Рассмотрим случай 3 (два групповых профиля). Здесь ранжи­руются среднегрупповые значения, полученные в 2-х группах испытуе­мых по определенному, одинаковому для двух групп, набору признаков. В дальнейшем линия рассуждений такая же, как и в предыдущих двух случаях.

Рассмотрим случай 4 (индивидуальный и групповой профили). Здесь ранжируются отдельно индивидуальные значения испытуемого исреднегрупповые значения по тому же набору признаков, которые полу­чены, как правило, при исключении этого отдельного испытуемого - он не участвует в среднегрупповом профиле, с которым будет сопоставляться его индивидуальный профиль. Ранговая корреляция позволит проверить, насколько согласованы индивидуальный и групповой профили.

Во всех четырех случаях значимость полученного коэффициента корреляции определяется по количеству ранжированных значений N. В первом случае это количество будет совпадать с объемом выборки п. Во втором случае количеством наблюдений будет количество признаков, составляющих иерархию. В третьем и четвертом случае N - это также количество сопоставляемых признаков, а не количество испытуемых в группах. Подробные пояснения даны в примерах.

Если абсолютная величина r s достигает критического значения или превышает его, корреляция достоверна.

Гипотезы

Возможны два варианта гипотез. Первый относится к случаю 1, второй - к трем остальным случаям.

Первый вариант гипотез

H 0: Корреляция между переменными А и Б не отличается от нуля.

H 1: Корреляция между переменными А и Б достоверно отличается от нуля.

Второй вариант гипотез

H 0: Корреляция между иерархиями А и Б не отличается от нуля.

H 1: Корреляция между иерархиями А и Б достоверно отличается от нуля.

Графическое представление метода ранговой корреляции

Чаще всего корреляционную связь представляют графически в виде облака точек или в виде линий, отражающих общую тенденцию размещения точек в пространстве двух осей: оси признака А и призна­ка Б (см. Рис. 6.2).

Попробуем изобразить ранговую корреляцию в виде двух рядов ранжированных значений, которые попарно соединены линиями (Рис. 6.3). Если ранги по признаку А и по признаку Б совпадают, то между ними оказывается горизонтальная линия, если ранги не совпадают, то линия становится наклонной. Чем больше несовпадение рангов, тем бо­лее наклонной становится линия. Слева на Рис. 6.3 отображена макси­мально высокая положительная корреляция (r в =+1,0) - практически это "лестница". В центре отображена нулевая корреляция - плетенка с неправильными переплетениями. Все ранги здесь перепутаны. Справа отображена максимально высокая отрицательная корреляция (r s =-1,0) -паутина с правильным переплетением линий.

Рис. 6.3. Графическое представление ранговой корреляции:

а) высокая положительная корреляция;

б) нулевая корреляция;

в) высокая отрицательная корреляция

Ограничения коэффициента ранговой корреляции

1. По каждой переменной должно быть представлено не менее 5 на­блюдений. Верхняя граница выборки определяется имеющимися таб­лицами критических значений (Табл.XVI Приложения 1), а именно N 40.

2. Коэффициент ранговой корреляции Спирмена r s при большом коли­честве одинаковых рангов по одной или обеим сопоставляемым пе­ременным дает огрубленные значения. В идеале оба коррелируемых ряда должны представлять собой две последовательности несовпа­дающих значений. В случае, если это условие не соблюдается, необ­ходимо вносить поправку на одинаковые ранги. Соответствующая формула дана в примере 4.

Пример 1 - корреляция между двумя признаками

Висследовании, моделирующем деятельность авиадиспетчера (Одерышев Б.С., Шамова Е.П., Сидоренко Е.В., Ларченко Н.Н., 1978), группа испытуемых, студентов физического факультета ЛГУ проходила подготовку перед началом работы на тренажере. Испытуе­мые должны были решать задачи по выбору оптимального типа взлет­но-посадочной полосы для заданного типа самолета. Связано ли коли­чество ошибок, допущенных испытуемыми в тренировочной сессии, с показателями вербального и невербального интеллекта, измеренными по методике Д. Векслера?

Таблица 6.1

Показатели количества ошибок в тренировочной сессии и показатели уровня вербального и невербального интеллекта у студентов-физиков (N=10)

Испытуемый

Количество ошибок

Показатель вербального интеллекта

Показатель невербального интеллекта

Сначала попробуем ответить на вопрос, связаны ли между собой показатели количества ошибок и вербального интеллекта.

Сформулируем гипотезы.

H 0: Корреляция между показателем количества ошибок в тренировочной сессии и уровнем вербального интеллекта не отличается от нуля.

H 1 : Корреляция между показателем количества ошибок в тренировочной сессии и уровнем вербального интеллекта статистически значимо отличается от нуля.

Далее нам необходимо проранжировать оба показателя, Приписы­вая меньшему значению меньший ранг, затем подсчитать разности меж­ду рангами, которые получил каждый испытуемый по двум переменным (признакам), и возвести эти разности в квадрат. Произведем все необ­ходимые расчеты в таблице.

В Табл. 6.2 в первой колонке слева представлены значения по показателю количества ошибок; в следующей колонке - их ранги. В третьей колонке слева представлены значения по показателю вербаль­ного интеллекта; в следующем столбце - их ранги. В пятом слева пред­ставлены разности d между рангом по переменной А (количество оши­бок) и переменной Б (вербальный интеллект). В последнем столбце представлены квадраты разностей - d 2 .

Таблица 6.2

Расчет d 2 для рангового коэффициента корреляции Спирмена r s при сопоставлении показателей количества ошибок и вербального интеллекта у студентов-физиков (N=10)

Испытуемый

Переменная А

количество ошибок

Переменная Б

вербальный интеллект.

d (ранг А -

J 2

Индивидуальные

значения

Индивидуальные

значения

Коэффициент ранговой корреляции Спирмена подсчитывается по формуле:

где d - разность между рангами по двум переменным для каж­дого испытуемого;

N - количество ранжируемых значений, в. данном случае ко­личество испытуемых.

Рассчитаем эмпирическое значение r s:

Полученное эмпирическое значение г s близко к 0. И все же определим критические значения r s при N=10 по Табл. XVI Приложения 1:

Ответ: H 0 принимается. Корреляция между показателем коли­чества ошибок в тренировочной сессии и уровнем вербального интел­лекта не отличается от нуля.

Теперь попробуем ответить на вопрос, связаны ли между собой показатели количества ошибок и невербального интеллекта.

Сформулируем гипотезы.

H 0: Корреляция между показателем количества ошибок в тренировочной сессии и уровнем невербального интеллекта не отличается от 0.

H 1: Корреляция между показателем количества ошибок в тренировочной сессии и уровнем невербального интеллекта статистически значимо отличается от 0.

Результаты ранжирования и сопоставления рангов представлены в Табл. 6.3.

Таблица 6.3

Расчет d 2 для рангового коэффициента корреляции Спирмена r s при сопоставлении показателей количества ошибок и невербального интеллекта у студентов-физиков (N=10)

Испытуемый

Переменная А

количество ошибок

Переменная Е

невербальный интеллект

d (ранг А -

d 2

Индивидуальные

Индивидуальные

значения

значения

Мы помним, что для определения значимости r s неважно, являет­ся ли он положительным или отрицательным, важна лишь его абсолют­ная величина. В данном случае:

r s эмп

Ответ: H 0 принимается. Корреляция между показателем коли­чества ошибок в тренировочной сессии и уровнем невербального интел­лекта случайна, r s не отличается от 0.

Вместе с тем, мы можем обратить внимание на определенную тенденцию отрицательной связи между этими двумя переменными. Возможно, мы смогли бы ее подтвердить на статистически значимом уровне, если бы увеличили объем выборки.

Пример 2 - корреляция между индивидуальными профилями

В исследовании, посвященном проблемам ценностной реориента-ции, выявлялись иерархии терминальных ценностей по методике М. Рокича у родителей и их взрослых детей (Сидоренко Е.В., 1996). Ранги терминальных ценностей, полученные при обследовании пары мать-дочь (матери - 66 лет, дочери - 42 года) представлены в Табл. 6.4. Попытаемся определить, как эти ценностные иерархии коррелиру­ют друг с другом.

Таблица 6.4

Ранги терминальных ценностей по списку М.Рокича в индивидуальных иерархиях матери и дочери

Терминальные ценности

Ранг ценностей в

Ранг ценностей в

d 2

иерархии матери

иерархии дочери

1 Активная деятельная жизнь

2 Жизненная мудрость

3 Здоровье

4 Интересная работа

5 Красота природы и искусство

7 Материально обеспеченная жизнь

8 Наличие хороших и верных друзей

9 Общественное признание

10 Познание

11 Продуктивная жнзнь

12 Развитие

13 Развлечения

14 Свобода

15 Счастливая семейная жизнь

16 Счастье других

17 Творчество

18 Уверенность в себе

Сформулируем гипотезы.

H 0: Корреляция между иерархиями терминальных ценностей матери и дочери не отличается от нуля.

H 1: Корреляция между иерархиями терминальных ценностей матери и дочери статистически значимо отличается от нуля.

Поскольку ранжирование ценностей предполагается самой проце­дурой исследования, нам остается лишь подсчитать разности между рангами 18 ценностей в двух иерархиях. В 3-м и 4-м столбцах Табл. 6.4 представлены разности d и квадраты этих разностей d 2 .

Определяем эмпирическое значение r s по формуле:

где d - разности между рангами по каждой из переменных, в данном случае по каждой из терминальных ценностей;

N - количество переменных, образующих иерархию, в дан­ном случае количество ценностей.

Для данного примера:

По Табл. XVI Приложения 1 определяем критические значения:

Ответ: H 0 отвергается. Принимается H 1 . Корреляция между иерархиями терминальных ценностей матери и дочери статистически значима (р<0,01) и является положительной.

По данным Табл. 6.4 мы можем определить, что основные рас­хождения приходятся на ценности "Счастливая семейная жизнь", "Общественное признание" и "Здоровье", ранги остальных ценностей достаточно близки.

Пример 3 - корреляция между двумя групповыми иерархиями

Джозеф Вольпе в книге, написанной совместно с сыном (Wolpe J., Wolpe D., 1981) приводит упорядоченный перечень из наиболее час­то встречающихся у современного человека "бесполезных", по его обо­значению, страхов, которые не несут сигнального значения и лишь ме­шают полноценно жить и действовать. В отечественном исследовании, проведенном М.Э. Раховой (1994) 32 испытуемых должны были по 10-балльной шкале оценить, насколько актуальным для них является тот или иной вид страха из перечня Вольпе 3 . Обследованная выборка состояла из студентов Гидрометеорологического и Педагогического ин­ститутов Санкт-Петербурга: 15 юношей и 17 девушек в возрасте от 17 до 28 лет, средний возраст 23 года.

Данные, полученные по 10-балльной шкале, были усреднены по 32 испытуемым, и средние проранжированы. В Табл. 6.5 представлены ранговые показатели, полученные Дж. Вольпе и М. Э. Раховой. Сов­падают ли ранговые последовательности 20 видов страха?

Сформулируем гипотезы.

H 0: Корреляция между упорядоченными перечнями видов страха в аме­риканской и отечественных выборках не отличается от нуля.

H 1: Корреляция между упорядоченными перечнями видов страха в аме­риканской и отечественной выборках статистически значимо отли­чается от нуля.

Все расчеты, связанные с вычислением и возведением в квадрат разностей между рангами разных видов страха в двух выборках, пред­ставлены в Табл. 6.5.

Таблица 6.5

Расчет d для рангового коэффициента корреляции Спирмена при со­поставлении упорядоченных перечней видов страха в американской и отечественной выборках

Виды страха

Ранг в американской выборке

Ранг в российской

Страх публичного выступления

Страх полета

Страх совершить ошибку

Страх неудачи

Страх неодобрения

Страх отвержения

Страх злых люден

Страх одиночества

Страх крови

Страх открытых ран

Страх дантиста

Страх уколов

Страх прохождения тестов

Страх полиции ^милиции)

Страх высоты

Страх собак

Страх пауков

Страх искалеченных людей

Страх больниц

Страх темноты

Определяем эмпирическое значение r s:

По Табл. XVI Приложения 1 определяем критические значения г s при N=20:

Ответ: H 0 принимается. Корреляция между упорядоченными перечнями видов страха в американской и отечественной выборках не достигает уровня статистической значимости, т. е. значимо не отличает­ся от нуля.

Пример 4 - корреляция между индивидуальным и среднегрупповым профилями

Выборке петербуржцев в возрасте от 20 до 78 лет (31 мужчина, 46 женщин), уравновешенной по возрасту таким образом, что лица в возрасте старше 55 лет составляли в ней 50% 4 , предлагалось ответить на вопрос: "Какой уровень развития каждого из перечисленных ниже качеств необходим для депутата Городского собрания Санкт-Петербурга?" (Сидоренко Е.В., Дерманова И.Б., Анисимова О.М., Витенберг Е.В., Шульга А.П., 1994). Оценка производилась по 10-балльной шкале. Параллельно с этим обследовалась выборка из депута­тов и кандидатов в депутаты в Городское собрание Санкт-Петербурга (n=14). Индивидуальная диагностика политических деятелей и претен­дентов производилась с помощью Оксфордской системы экспресс-видеодиагностики по тому же набору личностных качеств, который предъявлялся выборке избирателей.

В Табл. 6.6 представлены средние значения, полученные для ка­ждого из качеств в выборке избирателей ("эталонный ряд") и индиви­дуальные значения одного из депутатов Городского собрания.

Попытаемся определить, насколько индивидуальный профиль де­путата К-ва коррелирует с эталонным профилем.

Таблица 6.6

Усредненные эталонные оценки избирателей (п=77) и индивидуальные показатели депутата К-ва по 18 личностным качествам экспресс-видеодиагностики

Наименование качества

Усредненные эталонные оценки избирателей

Индивидуальные показатели депутата К-ва

1. Общий уровень культуры

2. Обучаемость

4. Способность к творчеству нового

5.. Самокритичность

6. Ответственность

7. Самостоятельность

8. Энергия, активность

9. Целеустремленность

10. Выдержка, самообладание

И. Стойкость

12. Личностная зрелость

13. Порядочность

14. Гуманизм

15. Умение общаться с людьми

16. Терпимость к чужому мнению

17. Гибкость поведения

18. Способность производить благоприятное впечатление

Таблица 6.7

Расчет d 2 для рангового коэффициента корреляции Спирмена между эталонным и индивидуальным профилями личностных качеств депутата

Наименование качества

ранг качества в эталонном профиле

Ряд 2: ранг качества в индивидуальном профиле

d 2

1 Ответственность

2 Порядочность

3 Умение общаться с людьми

4 Выдержка, самообладание

5 Общий уровень культуры

6 Энергия, активность

8 Самокритичность

9 Самостоятельность

10 Личностная зрелость

И Целеустремленность

12 Обучаемость

13 Гуманизм

14 Терпимость к чужому мнению

15 Стойкость

16 Гибкость поведения

17 Способность производить благоприятное впечатление

18 Способность к творчеству нового

Как видно из Табл. 6.6, оценки избирателей и индивидуальные показатели депутата варьируют в разных диапазонах. Действительно оценки избирателей были получены по 10-балльной шкале, а индивидуальные показатели по экспресс-видеодиагностике измеряются по 20-ти балльной шкале. Ранжирование позволяет нам перевести обе шкалы измерения в единую шкалу, где единицей измерения будет 1 ранг, а максимальное значение составит 18 рангов.

Ранжирование, как мы помним, необходимо произвести отдельно по каждому ряду значений. В данном случае целесообразно начислять большему значению меньший ранг, чтобы сразу можно было увидеть, на каком месте по значимости (для избирателей) или по выраженности (у депутата) находится то или иное качество.

Результаты ранжирования представлены в Табл. 6.7. Качества перечислены в последовательности, отражающей эталонный профиль.

Сформулируем гипотезы.

H 0: Корреляция между индивидуальным профилем депутата К-ва и эталонным профилем, построенным по оценкам избирателей, не от­личается от нуля.

H 1: Корреляция между индивидуальным профилем депутата К-ва и эталонным профилем, построенным по оценкам избирателей, стати­стически значимо отличается от нуля. Поскольку в обоих сопоставляемых ранговых рядах присутствуют

группы одинаковых рангов, перед подсчетом коэффициента ранговой

корреляции необходимо внести поправки на одинаковые ранги Т а и Т b :

где а - объем каждой группы одинаковых рангов в ранговом ряду А,

b - объем каждой группы одинаковых рангов в ранговом ряду В.

В данном случае, в ряду А (эталонный профиль) присутствует одна группа одинаковых рангов - качества "обучаемость" и "гуманизм" имеют один и тот же ранг 12,5; следовательно, а =2.

T а =(2 3 -2)/12=0,50.

В ряду В (индивидуальный профиль) присутствует две группы одинаковых рангов, при этом b 1 =2 и b 2 =2.

T a =[(2 3 -2)+(2 3 -2)]/12=1,00

Для подсчета эмпирического значения r s используем формулу

В данном случае:

Заметим, что если бы поправка на одинаковые ранги нами не вносилась, то величина r s была бы лишь на (на 0,0002) выше:

При больших количествах одинаковых рангов изменения г 5 могут оказаться гораздо более существенными. Наличие одинаковых рангов означает меньшую степень дифференцированное™ упорядоченных переменных и, следовательно, меньшую возможность оценить степень связи между ними (Суходольский Г.В., 1972, с.76).

По Табл. XVI Приложения 1 определяем критические значения г, при N=18:

Ответ: Hq отвергается. Корреляция между индивидуальным профилем депутата К-ва и эталонным профилем, отвечающим требова­ниям избирателей, статистически значима (р<0,05) и является положи­тельной.

Из Табл. 6.7 видно, что депутат К-в имеет более низкий ранг по шкалам Умения общаться с людьми и более высокие ранги по шкалам Целеустремленности и Стойкости, чем это предписывается избиратель­ским эталоном. Этими расхождениями, главным образом, и объясняется некоторое снижение полученного r s .

Сформулируем общий алгоритм подсчета r s .

37. Коэффициент ранговой корреляции Спирмена.

С. 56 (64) 063.JPG

http://psystat.at.ua/publ/1-1-0-33

Коэффициент ранговой корреляции Спирмена используется в случаях, когда:
- переменные имеют ранговую шкалу измерения;
- распределение данных слишком отличается от нормального или вообще неизвестно;
- выборки имеют небольшой объём (N < 30).

Интерпретация рангового коэффициента корреляции Спирмена не отличается от коэффициента Пирсона, однако его смысл несколько отличен. Чтобы понять различие этих методов и логически обосновать области их применения сравним их формулы.

Коэффициент корреляции Пирсона:

Коэффициент корреляции Спирмена:

Как видим формулы значительно различаются. Сравним формулы

В формуле корреляции Пирсона используется среднее арифметическое и стандартное отклонение коррелируемых рядов, а в формуле Спирмена не используется. Таким образом, для получения адекватного результата по формуле Пирсона, необходимо, чтобы коррелируемые ряды были приближены к нормальному распределению (среднее и стандартное отклонение являются параметрами нормального распределения ). Для формулы Спирмена это не актуально.

Элементом формулы Пирсона является стандартизация каждого ряда в z-шкалу .

Как видим, перевод переменных в Z-шкалу присутствует в формуле коэффициента корреляции Пирсона. Соответственно, для коэффициента Пирсона абсолютно не имеет значение масштаб данных: к примеру, мы можем коррелировать две переменных, одна из которых имеет мин. = 0 и макс. = 1, а вторая мин. = 100 и макс. = 1000. Как бы не различался размах диапазона значений, все они будут переведены в стандартные z-значения одинаковые по своему масштабу.

В коэффициенте Спирмена такой нормализации не происходит, поэтому

ОБЯЗАТЕЛЬНЫМ УСЛОВИЕМ ИСПОЛЬЗОВАНИЯ КОЭФФИЦИЕНТА СПИРМЕНА ЯВЛЯЕТСЯ РАВЕНСТВО РАЗМАХА ДВУХ ПЕРЕМЕННЫХ.

Перед использованием коэффициента Спирмена для рядов данных с различным размахом, необходимо обязательно их ранжировать . Ранжирование приводит к тому, что значения этих рядов приобретают одинаковый минимум = 1 (минимальный ранг) и максимум, равный количеству значений (максимальный, последний ранг = N, т.е. максимальному количеству случаев в выборке).

В каких случаях можно обойтись без ранжирования

Это случаи, когда данные имеют исходно ранговую шкалу . К примеру, тест ценностных ориентаций Рокича.

Также, это случаи, когда количество вариантов значений невелико и в выборке присутствуют фиксированные минимум и максимум. К примеру, в семантическом дифференциале минимум = 1, максимум = 7.

Пример расчета рангового коэффициента корреляции Спирмена

Тест ценностных ориентаций Рокича был проведён на двух выборках Xи Y. Задача: узнать, насколько близки иерархии ценностей данных выборок (буквально – на сколько они похожи).

Полученное значение r=0,747 проверяется по таблице критических значений . Согласно таблице, при N=18, полученное значение достоверно на уровне p<=0,005

Ранговые коэффициенты корреляции по Спирману и Кендалу

Для переменных, принадлежащих к порядковой шкале или для переменных, не подчиняющихся нормальному распределению, а также для переменных принадлежащих к интервальной шкале, вместо коэффициента Пирсона рассчитывается ранговая корреляция по Спирману. Для этого отдельным значениям переменных присваиваются ранговые места, которые впоследствии обрабатываются с помощью соответствующих формул. Чтобы выявить ранговую корреляцию, уберите в диалоговом окне Bivariate Correlations... (Парные корреляции) метку для расчета корреляции по Пирсону, установленную по умолчанию. Вместо этого активируйте расчет корреляции Спирмана. Это расчет даст следующие результаты. Коэффициенты ранговой корреляции весьма близки к соответствующим значениям коэффициентов Пирсона (исходные переменные имеют нормальное распределение).

titkova-matmetody.pdf с. 45

Метод ранговой корреляции Спирмена позволяет определить тесноту (силу) и направление

корреляционной связи между двумя признаками или двумя профилями (иерархиями) признаков.

Для подсчета ранговой корреляции необходимо располагать двумя рядами значений,

которые могут быть проранжированы. Такими рядами значений могут быть:

1) два признака, измеренные в одной и той же группе испытуемых;

2) две индивидуальные иерархии признаков, выявленные у двух испытуемых по одному и тому же

набору признаков;

3) две групповые иерархии признаков,

4) индивидуальная и групповая иерархии признаков.

Вначале показатели ранжируются отдельно по каждому из признаков.

Как правило, меньшему значению признака начисляется меньший ранг.

В первом случае (два признака) ранжируются индивидуальные значения по первому

признаку, полученные разными испытуемыми, а затем индивидуальные значения по второму

признаку.

Если два признака связаны положительно, то испытуемые, имеющие низкие ранги по

одному из них, будут иметь низкие ранги и по другому, а испытуемые, имеющие высокие ранги по

одному из признаков, будут иметь по другому признаку также высокие ранги. Для подсчета rs

необходимо определить разности (d) между рангами, полученными данным испытуемым по обоим

признакам. Затем эти показатели d определенным образом преобразуются и вычитаются из 1. Чем

меньше разности между рангами, тем больше будет rs, тем ближе он будет к +1.

Если корреляция отсутствует, то все ранги будут перемешаны и между ними не будет

никакого соответствия. Формула составлена так, что в этом случае rs окажется близким к 0.

В случае отрицательной корреляции низким рангам испытуемых по одному признаку

будут соответствовать высокие ранги по другому признаку, и наоборот. Чем больше несовпадение

между рангами испытуемых по двум переменным, тем ближе rs к -1.

Во втором случае (два индивидуальных профиля ), ранжируются индивидуальные

значения, полученные каждым из 2-х испытуемым по определенному (одинаковому для них

обоих) набору признаков. Первый ранг получит признак с самым низким значением; второй ранг –

признак с более высоким значением и т.д. Очевидно, что все признаки должны быть измерены в

одних и тех же единицах, иначе ранжирование невозможно. Например, невозможно

проранжировать показатели по личностному опроснику Кеттелла (16PF), если они выражены в

"сырых" баллах, поскольку по разным факторам диапазоны значений различны: от 0 до 13, от 0 до

20 и от 0 до 26. Мы не можем сказать, какой из факторов будет занимать первое место по

выраженности, пока не приведем все значения к единой шкале (чаще всего это шкала стенов).

Если индивидуальные иерархии двух испытуемых связаны положительно, то признаки,

имеющие низкие ранги у одного из них, будут иметь низкие ранги и у другого, и наоборот.

Например, если у одного испытуемого фактор Е (доминантность) имеет самый низкий ранг, то и у

другого испытуемого он должен иметь низкий ранг, если у одного испытуемого фактор С

(эмоциональная устойчивость) имеет высший ранг, то и другой испытуемый должен иметь по

этому фактору высокий ранг и т.д.

В третьем случае (два групповых профиля), ранжируются среднегрупповые значения,

полученные в 2-х группах испытуемых по определенному, одинаковому для двух групп, набору

признаков. В дальнейшем линия рассуждений такая же, как и в предыдущих двух случаях.

В случае 4-ом (индивидуальный и групповой профили), ранжируются отдельно

индивидуальные значения испытуемого и среднегрупповые значения по тому же набору

признаков, которые получены, как правило, при исключении этого отдельного испытуемого – он

не участвует в среднегрупповом профиле, с которым будет сопоставляться его индивидуальный

профиль. Ранговая корреляция позволит проверить, насколько согласованы индивидуальный и

групповой профили.

Во всех четырех случаях значимость полученного коэффициента корреляции определяется

по количеству ранжированных значений N. В первом случае это количество будет совпадать с

объемом выборки n. Во втором случае количеством наблюдений будет количество признаков,

составляющих иерархию. В третьем и четвертом случае N – это также количество сопоставляемых

признаков, а не количество испытуемых в группах. Подробные пояснения даны в примерах. Если

абсолютная величина rs достигает критического значения или превышает его, корреляция

достоверна.

Гипотезы.

Возможны два варианта гипотез. Первый относится к случаю 1, второй – к трем остальным

Первый вариант гипотез

H0: Корреляция между переменными А и Б не отличается от нуля.

H2: Корреляция между переменными А и Б достоверно отличается от нуля.

Второй вариант гипотез

H0: Корреляция между иерархиями А и Б не отличается от нуля.

H2: Корреляция между иерархиями А и Б достоверно отличается от нуля.

Ограничения коэффициента ранговой корреляции

1. По каждой переменной должно быть представлено не менее 5 наблюдений. Верхняя

граница выборки определяется имеющимися таблицами критических значений.

2. Коэффициент ранговой корреляции Спирмена rs при большом количестве одинаковых

рангов по одной или обеим сопоставляемым переменным дает огрубленные значения. В идеале

оба коррелируемых ряда должны представлять собой две последовательности несовпадающих

значений. В случае, если это условие не соблюдается, необходимо вносить поправку на

одинаковые ранги.

Коэффициент ранговой корреляции Спирмена подсчитывается по формуле:

Если в обоих сопоставляемых ранговых рядах присутствуют группы одинаковых рангов,

перед подсчетом коэффициента ранговой корреляции необходимо внести поправки на одинаковые

ранги Та и Тв:

Та = Σ (а3 – а)/12,

Тв = Σ (в3 – в)/12,

где а – объем каждой группы одинаковых рангов в ранговом ряду А, в объем каждой

группы одинаковых рангов в ранговом ряду В.

Для подсчета эмпирического значения rs используют формулу:

38. Точечно-бисериальный коэффициент корреляции.

О корреляции вообще см. вопрос № 36 с. 56 (64) 063.JPG

harchenko-korranaliz.pdf

Пусть переменная X измерена в сильной шкале, а переменная Y – в дихотомической. Точечный бисериальный коэффициент корреляции rpb вычисляется по формуле:

Здесь x 1 – среднее значение по Х объектов со значением «единица» по Y;

x 0 – среднее значение по Х объектов со значением «ноль» по Y;

s х – среднее квадратическое отклонение всех значений по Х;

n 1 – число объектов «единица» по Y, n 0 - число объектов «ноль» по Y;

n = n 1 + n 0 – объем выборки.

Точечный бисериальный коэффициент корреляции можно рассчитать также с помощью других эквивалентных выражений:

Здесь x – общее среднее значение по переменной Х .

Точечный бисериальный коэффициент корреляции rpb изменяется в пределах от –1 до +1. Его значение равно нулю в том случае, если пере-менные с единицей по Y имеют среднее по Y , равное среднему переменных с нулем по Y .

Проверка гипотезы о значимости точечного бисериального коэффициента корреляции заключается в проверке нулевой гипотезы h 0 о равенстве генерального коэффициента корреляции нулю: ρ = 0, которая осуществляется с помощью критерия Стьюдента. Эмпирическое значение

сравнивается с критическими значениями t a (df ) для числа степеней свободы df = n – 2

Если выполняется условие | t | ≤ (df ), нулевая гипотеза ρ = 0 не от-вергается. Точечный биссериальный коэффициент корреляции значимо от-личается от нуля, если эмпирическое значение | t | попадает в критическую область, то есть если выполняется условие | t | > (n – 2). Достоверность связи, рассчитанной с помощью точечного бисериального коэффициента корреляции rpb , можно определить также с помощью критерия χ 2 для числа степеней свободы df = 2.

Точечно-бисериальная корреляция

Последующая модификация коэффициента корреляции произведения моментов получила отражение в точечно бисериальном r . Эта стат. показывает связь между двумя переменными, одна из к-рых предположительно непрерывна и нормально распределена, а др. яв-ся дискретной в точном смысле слова. Точечно-бисериальный коэффициент корреляции обозначается через r pbis Поскольку в r pbis дихотомия отражает подлинную природу дискретной переменной, а не яв-ся искусственной, как в случае r bis , его знак определяется произвольно. Поэтому для всех практ. целей r pbis рассматривается в диапазоне от 0,00 до +1,00.

Существует и такой случай, когда две переменные считаются непрерывными и нормально распределенными, но обе искусственно дихотомизированы, как в случае бисериальной корреляции. Для оценки связи между такими переменными применяется тетрахорический коэффициент корреляции r tet ,к-рый был тж выведен Пирсоном. Осн. (точные) формулы и процедуры для вычисления r tet достаточно сложны. Поэтому при практ. применении этого метода используются приближения r tet ,получаемые на основе сокращенных процедур и таблиц.

/on-line/dictionary/dictionary.php?term=511

ТОЧЕЧНО-БИСЕРИАЛЬНЫЙ КОЭФФИЦИЕНТ КОРРЕЛЯЦИИ - это коэффициент корреляции между двумя переменными, одна из которых измерена в дихотомической шкале, а другая – в интервальной шкале. Применяется в классической и современной тестологии как показатель качества тестового задания – надежности-согласованности с общим баллом по тесту.

Для коррелирования переменных, измеренных в дихотомической и интервальной шкале используют точечно-бисериальный коэффициент корреляции .
Точечно-бисериальный коэффициент корреляции - это метод корреляционного анализа отношения переменных, одна из которых измерена в шкале наименований и принимает только 2 значения (к примеру, мужчины/женщины, ответ верный/ответ неверный, признак есть/признака нет), а вторая в шкале отношений или интервальной шкале. Формула расчета коэффициента точечно-бисериальной корреляции:

Где:
m1 и m0 - средние значения Х со значением 1 или 0 по Y.
σx – стандартное отклонение всех значений по Х
n1 ,n0 – количество значений Х с 1 или 0 по Y.
n – общее количество пар значений

Чаще всего данный вид коэффициента корреляции применяется для расчета связи пунктов теста с суммарной шкалой. Это один из видов проверки валидности.

39. Рангово-бисериальный коэффициент корреляции.

О корреляции вообще см. вопрос № 36 с. 56 (64) 063.JPG

harchenko-korranaliz.pdf с. 28

Рангово-бисериальный коэффициент корреляции, используемый в случаях, когда одна из переменных (Х ) представлена в порядковой шкале, а другая (Y ) – в дихотомической, вычисляется по формуле

.

Здесь – средний ранг объектов, имеющих единицу по Y ; – средний ранг объектов с нулем по Y , n – объем выборки.

Проверка гипотезы о значимости рангово-бисериального коэффи-циента корреляции осуществляется аналогично точечному биссериальному коэффициенту корреляции с помощью критерия Стьюдента с заменой в формулах r pb на r rb .

В тех случаях, когда одна переменная измеряется в дихотомической шкале (переменная X), а другая в ранговой шкале (переменная У), используется рангово-бисериальный коэффициент корреляции. Мы помним, что переменная X, измеренная в дихотомической шкале, принимает только два значения (кода) 0 и 1. Особо подчеркнем: несмотря на то что этот коэффициент изменяется в диапазоне от –1 до +1, его знак для интерпретации результатов не имеет значения. Это еще одно исключение из общего правила.

Расчет этого коэффициента производится по формуле:

где `X 1средний ранг по тем элементам переменной Y , которым соответствует код (признак) 1 в переменной Х ;

`X 0– средний ранг по тем элементам переменной Y, которым соответствует код (признак) 0 в переменной Х\

N – общее количество элементов в переменной X.

Для применения рангово-бисериального коэффициента корреляции необходимо соблюдать следующие условия:

1. Сравниваемые переменные должны быть измерены в разных шкалах: одна X – в дихотомической шкале; другая Y– в ранговой шкале.

2. Число варьирующих признаков в сравниваемых переменных X и Y должно быть одинаковым.

3. Для оценки уровня достоверности рангово-бисериального коэффициента корреляции следует пользоваться формулой (11.9)и таблицей критических значений для критерия Стьюдентапри k = n – 2.

http://psystat.at.ua/publ/drugie_vidy_koehfficienta_korreljacii/1-1-0-38

Случаи, когда одна из переменных представлена в дихотомической шкале , а другая в ранговой (порядковой) , требуют применения коэффициента рангово-бисериальной корреляции:

rpb=2 / n * (m1 - m0)

где:
n – число объектов измерения
m1 и m0 - средний ранг объектов с 1 или 0 по второй переменной.
Данный коэффициент также применяется при проверке валидности тестов.

40. Коэффициент линейной корреляции.

О корреляции вообще (и в частности о линейной как раз) см. вопрос № 36 с. 56 (64) 063.JPG

КОЭФФИЦИЕНТ КОРРЕЛЯЦИИ г-ПИРСОНА

r -Пирсона (Pearson r ) применяется для изучения взаимосвязи двух метричес- ких переменных, измеренных на одной и той же выборке. Существует множество ситуаций, в которых уместно его применение. Влияет ли интеллект на успе-ваемость на старших курсах университета? Связан ли размер заработной пла-ты работника с его доброжелательностью к коллегам? Влияет ли настроение школьника на успешность решения сложной арифметической задачи? Для ответа на подобные вопросы исследователь должен измерить два интересую-щих его показателя у каждого члена выборки. Данные для изучения взаимо-связи затем сводятся в таблицу, как в приведенном ниже примере.

ПРИМЕР 6.1

В таблице приведен пример исходных данных измерения двух показателей интел-лекта (вербального и невербального) у 20 учащихся 8-го класса.

Связь между этими переменными можно изобразить при помощи диаграммы рас-сеивания (см. рис. 6.3). Диаграмма показывает, что существует некоторая взаимо-связь измеренных показателей: чем больше значения вербального интеллекта, тем (преимущественно) больше значения невербального интеллекта.

Прежде чем дать формулу коэффициента корреляции, попробуем просле-дить логику ее возникновения, используя данные примера 6.1. Положение каждой /-точки (испытуемого с номером /) на диаграмме рассеивания отно-сительно остальных точек (рис. 6.3) может быть задано величинами и знака-ми отклонений соответствующих значений переменных от своих средних ве-личин: (xj - MJ и (у, -М у ). Если знаки этих отклонений совпадают, то это свидетельствует в пользу положительной взаимосвязи (большим значениям по х соответствуют большие значения по у или меньшим значениям по х со-ответствуют меньшие значения по у).

Для испытуемого № 1 отклонение от среднего по х и по у положительное, а для испытуемого № 3 и то и другое отклонения отрицательные. Следовательно, данные того и другого свидетельствуют о положительной взаимосвязи изучаемых призна-ков. Напротив, если знаки отклонений от средних по х и по у различаются, то это будет свидетельствовать об отрицательной взаимосвязи между признаками. Так, для испытуемого № 4 отклонение от среднего по х является отрицательным, по у - положительным, а для испытуемого № 9 - наоборот.

Таким образом, если произведение отклонений (х,- М х ) х (у, - М у ) поло-жительное, то данные /-испытуемого свидетельствуют о прямой (положи-тельной) взаимосвязи, а если отрицательное - то об обратной (отрицатель-ной) взаимосвязи. Соответственно, если х w у ъ основном связаны прямо пропорционально, то большинство произведений отклонений будет поло-жительным, а если они связаны обратным соотношением, то большинство произведений будет отрицательным. Следовательно, общим показателем для силы и направления взаимосвязи может служить сумма всех произведений отклонений для данной выборки:

При прямо пропорциональной связи между переменными эта величина является большой и положительной - для большинства испытуемых откло-нения совпадают по знаку (большим значениям одной переменной соответ-ствуют большие значения другой переменной и наоборот). Если же х и у име-ют обратную связь, то для большинства испытуемых большим значениям одной переменной будут соответствовать меньшие значения другой перемен-ной, т. е. знаки произведений будут отрицательными, а сумма произведений в целом будет тоже большой по абсолютной величине, но отрицательной по знаку. Если систематической связи между переменными не будет наблюдать-ся, то положительные слагаемые (произведения отклонений) уравновесятся отрицательными слагаемыми, и сумма всех произведений отклонений будет близка к нулю.

Чтобы сумма произведений не зависела от объема выборки, достаточно ее усреднить. Но мера взаимосвязи нас интересует не как генеральный параметр, а как вычисляемая его оценка - статистика. Поэтому, как и для формулы дис-персии, в этом случае поступим также, делим сумму произведений отклоне-ний не на N , а на TV- 1. Получается мера связи, широко применяемая в физи-ке и технических науках, которая называется ковариацией (Covahance ):


В психологии, в отличие от физики, большинство переменных измеряют-ся в произвольных шкалах, так как психологов интересует не абсолютное зна-чение признака, а взаимное расположение испытуемых в группе. К тому же ковариация весьма чувствительна к масштабу шкалы (дисперсии), в которой измерены признаки. Чтобы сделать меру связи независимой от единиц изме-рения того и другого признака, достаточно разделить ковариацию на соот-ветствующие стандартные отклонения. Таким образом и была получена фор- мула коэффициента корреляции К. Пирсона:

или, после подстановки выражений для о х и


Если значения той и другой переменной были преобразованы в г-значения по формуле


то формула коэффициента корреляции r-Пирсона выглядит проще (071.JPG):

/dict/sociology/article/soc/soc-0525.htm

КОРРЕЛЯЦИЯ ЛИНЕЙНАЯ - статистическая линейная связь непричинного характера между двумя количественными переменными х и у . Измеряется с помощью "коэффициента К.Л." Пирсона, который является результатом деления ковариации на стандартные отклонения обеих переменных:

,

где s xy - ковариация между переменными х и у ;

s x , s y - стандартные отклонения для переменных х и у ;

x i , y i - значения переменных х и у для объекта с номером i ;

x , y - средние арифметические для переменных х и у .

Коэффициент Пирсона r может принимать значения из интервала [-1; +1]. Значение r = 0 означает отсутствие линейной связи между переменными х и у (но не исключает статистической связи нелинейной). Положительные значения коэффициента (r > 0) свидетельствуют о прямой линейной связи; чем ближе его значение к +1, тем сильнее связь статистическая прямая. Отрицательные значения коэффициента (r < 0) свидетельствуют об обратной линейной связи; чем ближе его значение к -1, тем сильнее обратная связь. Значения r = ±1 означают наличие полной линейной связи, прямой или обратной. В случае полной связи все точки с координатами (x i , y i ) лежат на прямой y = a + bx .

"Коэффициент К.Л." Пирсона применяется также для измерения тесноты связи в модели регрессии линейной парной.

41. Корреляционная матрица и корреляционный граф.

О корреляции вообще см. вопрос № 36 с. 56 (64) 063.JPG

Корреляционная матрица. Часто корреляционный анализ включает в себя изучение связей не двух, а множества переменных, измеренных в количествен-ной шкале на одной выборке. В этом случае вычисляются корреляции для каждой пары из этого множества переменных. Вычисления обычно прово-дятся на компьютере, а результатом является корреляционная матрица.

Корреляционная матрица (Correlation Matrix ) - это результат вычисления корреляций одного типа для каждой пары из множества Р переменных, изме-ренных в количественной шкале на одной выборке.

ПРИМЕР

Предположим, изучаются связи между 5 переменными (vl, v2,..., v5; P = 5), изме-ренными на выборке численностью N=30 человек. Ниже приведена таблица ис-ходных данных и корреляционная матрица.

И
сходные данные:

Корреляционная матрица:

Нетрудно заметить, что корреляционная матрица является квадратной, симметрич-ной относительно главной диагонали (таккакг,у= /} у), с единицами на главной диа-гонали (так как г и = Гу = 1).

Корреляционная матрица является квадратной: число строк и столбцов равно числу переменных. Она симметрична относительно главной диагона-ли, так как корреляция х с у равна корреляции у с х. На ее главной диагонали располагаются единицы, так как корреляция признака с самим собой равна единице. Следовательно, анализу подлежат не все элементы корреляцион-ной матрицы, а те, которые находятся выше или ниже главной диагонали.

Количество коэффициентов корреляции, подлежащих анализу при изучении связей Рпризнаков определяется формулой: Р(Р- 1)/2. В приведенном выше примере количество таких коэффициентов корреляции 5(5 - 1)/2 = 10.

Основная задача анализа корреляционной матрицы - выявление структуры взаимосвязей множества признаков. При этом возможен визуальный анализ корреляционных плеяд - графического изображения структуры статистически значимых связей, если таких связей не очень много (до 10-15). Другой спо-соб - применение многомерных методов: множественного регрессионного, факторного или кластерного анализа (см. раздел «Многомерные методы...»). Применяя факторный или кластерный анализ, можно выделить группиров-ки переменных, которые теснее связаны друг с другом, чем с другими пере-менными. Весьма эффективно и сочетание этих методов, например, если признаков много и они не однородны.

Сравнение корреляций - дополнительная задача анализа корреляционной матрицы, имеющая два варианта. Если необходимо сравнение корреляций в одной из строк корреляционной матрицы (для одной из переменных), при-меняется метод сравнения для зависимых выборок (с. 148-149). При сравне-нии одноименных корреляций, вычисленных для разных выборок, применя-ется метод сравнения для независимых выборок (с. 147-148).

Методы сравнения корреляций в диагоналях корреляционной матрицы (для оценки стационарности случайного процесса) и сравнения нескольких корре-ляционных матриц, полученных для разных выборок (на предмет их одно-родности), являются трудоемкими и выходят за рамки данной книги. Позна-комиться с этими методами можно по книге Г. В. Суходольского 1 .

Проблема статистической значимости корреляций. Проблема заключается в том, что процедура статистической проверки гипотезы предполагает одно- кратное испытание, проведенное на одной выборке. Если один и тот же метод применяется многократно, пусть даже и в отношении различных переменных, то увеличивается вероятность получить результат чисто слу-чайно. В общем случае, если мы повторяем один и тот же метод проверки гипотезы к раз в отношении разных переменных или выборок, то при уста-новленной величине а мы гарантированно получим подтверждение гипоте-зы в ахк числе случаев.

Предположим, анализируется корреляционная матрица для 15 переменных, то есть вычислено 15(15-1)/2 = 105 коэффициентов корреляции. Для проверки гипотез установлен уровень а = 0, 05. Проверяя гипотезу 105 раз, мы пять раз (!) получим ее подтверждение независимо от того, существует ли связь на самом деле. Зная это и получив, скажем, 15 «статистически достоверных» коэффициентов корреляции, сможем ли мы сказать, какие из них получены случайно, а какие - отражают ре-альную связь?

Строго говоря, для принятия статистического решения необходимо умень-шить уровень а во столько раз, сколько гипотез проверяется. Но вряд ли это целесообразно, так как непредсказуемым образом увеличивается вероятность проигнорировать реально существующую связь (допустить ошибку II рода).

Одна только корреляционная матрица не является достаточным основанием для статистических выводов относительно входящих в нее отдельных коэффи- циентов корреляций!

Можно указать лишь один действительно убедительный способ решения этой проблемы: разделить выборку случайным образом на две части и прини-мать во внимание только те корреляции, которые статистически значимы в обеих частях выборки. Альтернативой может являться использование много-мерных методов (факторного, кластерного или множественного регрессион-ного анализа) - для выделения и последующей интерпретации групп статис-тически значимо связанных переменных.

Проблема пропущенных значений. Если в данных есть пропущенные значе-ния, то возможны два варианта расчета корреляционной матрицы: а) построч-ное удаление значений (Exclude cases listwise ); б) попарное удаление значений (Exclude cases pairwise ). При построчном удалении наблюдений с пропусками удаляется вся строка для объекта (испытуемого), который имеет хотя бы одно пропущенное значение по одной из переменных. Этот способ приводит к «пра-вильной» корреляционной матрице в том смысле, что все коэффициенты вы-числены по одному и тому же множеству объектов. Однако если пропущенные значения распределены случайным образом в переменных, то данный метод может привести к тому, что в рассматриваемом множестве данных не останется ни одного объекта (в каждой строке встретится, по крайней мере, одно пропу-щенное значение). Чтобы избежать подобной ситуации, используют другой способ, называемый попарным удалением. В этом способе учитываются только пропуски в каждой выбранной паре столбцов-переменных и игнорируются пропуски в других переменных. Корреляция для пары переменных вычисляет-ся по тем объектам, где нет пропусков. Во многих ситуациях, особенно когда число пропусков относительно мало, скажем 10%, и пропуски распределены достаточно хаотично, этот метод не приводит к серьезным ошибкам. Однако иногда это не так. Например, в систематическом смещении (сдвиге) оценки может «скрываться» систематическое расположение пропусков, являющееся причиной различия коэффициентов корреляции, построенных по разным под-множествам (например - для разных подгрупп объектов). Другая проблема, связанная с корреляционной матрицей, вычисленной при попарном удалении пропусков, возникает при использовании этой матрицы в других видах анали-за (например, в множественном регрессионном или факторном анализе). В них предполагается, что используется «правильная» корреляционная матрица с определенным уровнем состоятельности и «соответствия» различных коэффи-циентов. Использование матрицы с «плохими» (смещенными) оценками приводит к тому, что программа либо не в состоянии анализировать такую матри-цу, либо результаты будут ошибочными. Поэтому, если применяется попарный метод исключения пропущенных данных, необходимо проверить, имеются или нет систематические закономерности в распределении пропусков.

Если попарное исключение пропущенных данных не приводит к какому-либо систематическому сдвигу средних значений и дисперсий (стандартных отклонений), то эти статистики будут похожи на аналогичные показатели, вы-численные при построчном способе удаления пропусков. Если наблюдается значительное различие, то есть основание предполагать наличие сдвига в оцен-ках. Например, если среднее (или стандартное отклонение) значений перемен-ной А, которое использовалось при вычислении ее корреляции с переменной В, намного меньше среднего (или стандартного отклонения) тех же значений переменной А, которые использовались при вычислении ее корреляции с пе-ременной С, то имеются все основания ожидать, что эти две корреляции (А-В нА-С) основаны на разных подмножествах данных. В корреляциях будет сдвиг, вызванный неслучайным расположением пропусков в значениях переменных.

Анализ корреляционных плеяд. После решения проблемы статистической зна-чимости элементов корреляционной матрицы статистически значимые корре-ляции можно представить графически в виде корреляционной плеяды или пле-яд. Корреляционная плеяда - это фигура, состоящая из вершин и соединяющих их линий. Вершины соответствуют признакам и обозначаются обычно цифра-ми - номерами переменных. Линии соответствуют статистически достоверным связям и графически выражают знак, а иногда - и /j-уровень значимости связи.

Корреляционная плеяда может отра-жать все статистически значимые связи корреляционной матрицы (иногда называ-ется корреляционным графом ) или только их содержательно выделенную часть (напри-мер, соответствующую одному фактору по результатам факторного анализа).

ПРИМЕР ПОСТРОЕНИЯ КОРРЕЛЯЦИОННОЙ ПЛЕЯДЫ


Подготовка к проведению государственной (итоговой) аттестации выпускников: формирования базы ЕГЭ (общий список участников ЕГЭ всех категорий с указанием предметов) – с учетом резервных дней в случае совпадения предметов;

  • План работы (27)

    Решение

    2. Деятельность ОУ по совершенствованию содержания и оценке качества по предметам естественно-математического образования МОУ СОШ № 4, Литвиновская, Чапаевская,

  • Дисциплина "высшая математика" у некоторых вызывает неприятие, так как поистине не всем дано ее понять. Но те, кому посчастливилось изучать этот предмет и решать задачи, используя различные уравнения и коэффициенты, могут похвастаться практически полной в ней осведемленности. В психологической науке существует не только гуманитарная направленность, но и определенные формулы и способы для математической проверки выдвигаемой в ходе исследований гипотезы. Для этого применяются различные коэффициенты.

    Коэффициент корреляции Спирмена

    Это распространенное измерение по определению тесноты связи между какими-либо двумя признаками. Коэффициент еще называют непараметрическим методом. Он показывает статистику связи. То есть мы знаем, например, что у ребенка агрессия и раздражительность связаны между собой, а коэффициент корреляции рангов Спирмена показывает статистическую математическую связь этих двух признаков.

    Как вычисляется ранговый коэффициент?

    Естественно, что для всех математических определений или величин существуют свои формулы, по которым они вычисляются. Ею обладает и коэффициент корреляции Спирмена. Формула у него следующая:

    С первого взгляда формула не совсем понятна, но если разобраться, все очень легко вычисляется:

    • n - это количество признаков или показателей, которые проранжированы.
    • d - разность определенных двух рангов, соответствующих конкретным двум переменным каждого испытуемого.
    • ∑d 2 - сумма всех квадратов разностей рангов признака, квадраты которых вычисляются отдельно для каждого ранга.

    Область применения математической меры связи

    Для применения рангового коэффициента необходимо, чтобы количественные данные признака были проранжированы, то есть им был присвоен определенный номер в зависимости от места, на котором расположен признак, и от его значения. Доказано, что два ряда признаков, выраженных в числовом виде, несколько параллельны между собой. Коэффициент ранговой корреляции Спирмена определяет степень этой параллельности, тесноты связи признаков.

    Для математической операции по расчету и определению связи признаков с помощью указанного коэффициента нужно произвести некоторые действия:

    1. Каждому значению какого-либо испытуемого или явления присваивается номер по порядку - ранг. Он может соответствовать значению явления по возрастанию и по убыванию.
    2. Дальше сопоставляются ранги значения признаков двух количественных рядов для того, чтобы определить разность между ними.
    3. В отдельном столбце таблицы для каждой полученной разности прописывается ее квадрат, а внизу результаты суммируются.
    4. После этих действий применяется формула, по которой рассчитывается коэффициент корреляции Спирмена.

    Свойства коэффициента корреляции

    К основным свойствам коэффициента Спирмена относят следующие:

    • Измерение значений в пределах от -1 до 1.
    • Знак коэффициента интерпретаций не имеет.
    • Теснота связи определяется по принципу: чем выше величина, тем теснее связь.

    Как проверить полученное значение?

    Для проверки связи признаков между собой необходимо выполнить определенные действия:

    1. Выдвигается нулевая гипотеза (H0), она же основная, затем формулируется другая, альтернативная первой (H 1). Первая гипотеза будет заключаться в том, что коэффициент корреляции Спирмена равняется 0 - это значит, что связи не будет. Вторая, наоборот, гласит, что коэффициент не равен 0, тогда связь есть.
    2. Следующим действием будет нахождение наблюдаемого значения критерия. Оно находится по основной формуле коэффициента Спирмена.
    3. Далее находятся критические значения заданного критерия. Это можно сделать только с помощью специальной таблицы, где отображаются различные значения по заданным показателям: уровень значимости (l) и число, определяющее (n).
    4. Теперь нужно сравнить два полученных значения: установленного наблюдаемого, а также критического. Для этого необходимо построить критическую область. Нужно начертить прямую линию, на ней отметить точки критического значения коэффициента со знаком "-" и со знаком"+". Слева и справа от критических значений полукругами от точек откладываются критические области. Посередине, объединяя два значения, отмечается полукругом ОПГ.
    5. После этого делается вывод о тесноте связи между двумя признаками.

    Где лучше использовать эту величину

    Самой первой наукой, где активно использовался этот коэффициент, была психология. Ведь это наука, не основывающаяся на цифрах, однако для доказательства каких-либо важных гипотез, касающихся развития отношений, черт характера людей, знаний студентов, требуется статистическое подтверждение выводов. Также его используют в экономике, в частности, при валютных оборотах. Здесь оцениваются признаки без статистики. Очень удобен коэффициент ранговой корреляции Спирмена в этой области применения тем, что оценка производится независимо от распределения переменных, так как они заменяются ранговым числом. Активно применяется коэффициент Спирмена в банковском деле. Социология, политология, демография и другие науки также используют его в своих исследованиях. Результаты получаются быстро и максимально точно.

    Удобно и быстро используется коэффициент корреляции Спирмена в Excel. Здесь существуют специальные функции, которые помогают быстро получить необходимые значения.

    Какие еще коэффициенты корреляции существуют?

    Кроме того, что мы узнали про коэффициент корреляции Спирмена, существуют еще различные корреляционные коэффициенты, позволяющие измерить, оценить качественные признаки, связь между количественными признаками, тесноту связи между ними, представленными в ранговой шкале. Это такие коэффициенты, как биссериальный, рангово-биссериальный, контенгенции, ассоциации, и так далее. Коэффициент Спирмена очень точно показывает тесноту связи, в отличие от всех остальных методов ее математического определения.

    На практике для определения тесноты связи двух признаков часто применяется коэффициент ранговой корреляции Спирмена (Р). Значения каждого признака ранжируются по степени возрастания (от 1 до n), затем определяется разница (d) между рангами, соответствующими одному наблюдению.

    Пример №1 . Зависимость между объемом промышленной продукции и инвестициями в основной капитал по 10 областям одного из федеральных округов РФ в 2003 году характеризуется следующими данными.
    Вычислите ранговые коэффициенты корреляции Спирмена и Кендэла . Проверить их значимость при α=0,05. Сформулируйте вывод о зависимости между объемом промышленной продукции и инвестициями в основной капитал по рассматриваемым областям РФ.

    Присвоим ранги признаку Y и фактору X . Найдем сумму разности квадратов d 2 .
    Используя калькулятор , вычислим коэффициент ранговой корреляции Спирмена:

    X Y ранг X, d x ранг Y, d y (d x - d y) 2
    1.3 300 1 2 1
    1.8 1335 2 12 100
    2.4 250 3 1 4
    3.4 946 4 8 16
    4.8 670 5 7 4
    5.1 400 6 4 4
    6.3 380 7 3 16
    7.5 450 8 5 9
    7.8 500 9 6 9
    17.5 1582 10 16 36
    18.3 1216 11 9 4
    22.5 1435 12 14 4
    24.9 1445 13 15 4
    25.8 1820 14 19 25
    28.5 1246 15 10 25
    33.4 1435 16 14 4
    42.4 1800 17 18 1
    45 1360 18 13 25
    50.4 1256 19 11 64
    54.8 1700 20 17 9
    364

    Связь между признаком Y фактором X сильная и прямая.

    Оценка коэффициента ранговой корреляции Спирмена



    По таблице Стьюдента находим Tтабл.
    T табл = (18;0.05) = 1.734
    Поскольку Tнабл > Tтабл, то отклоняем гипотезу о равенстве нулю коэффициента ранговой корреляции. Другими словами, коэффициента ранговой корреляции Спирмена статистически - значим.

    Интервальная оценка для коэффициента ранговой корреляции (доверительный интервал)
    Доверительный интервал для коэффициента ранговой корреляции Спирмена: p(0.5431;0.9095).

    Пример №2 . Исходные данные.

    5 4
    3 4
    1 3
    3 1
    6 6
    2 2
    Так как в матрице имеются связанные ранги (одинаковый ранговый номер) 1-го ряда, произведем их переформирование. Переформирование рангов производиться без изменения важности ранга, то есть между ранговыми номерами должны сохраниться соответствующие соотношения (больше, меньше или равно). Также не рекомендуется ставить ранг выше 1 и ниже значения равного количеству параметров (в данном случае n = 6). Переформирование рангов производится в табл.
    Новые ранги
    1 1 1
    2 2 2
    3 3 3.5
    4 3 3.5
    5 5 5
    6 6 6
    Так как в матрице имеются связанные ранги 2-го ряда, произведем их переформирование. Переформирование рангов производится в табл.
    Номера мест в упорядоченном ряду Расположение факторов по оценке эксперта Новые ранги
    1 1 1
    2 2 2
    3 3 3
    4 4 4.5
    5 4 4.5
    6 6 6
    Матрица рангов.
    ранг X, d x ранг Y, d y (d x - d y) 2
    5 4.5 0.25
    3.5 4.5 1
    1 3 4
    3.5 1 6.25
    6 6 0
    2 2 0
    21 21 11.5
    Поскольку среди значений признаков х и у встречается несколько одинаковых, т.е. образуются связанные ранги, то в таком случае коэффициент Спирмена вычисляется как:

    где


    j - номера связок по порядку для признака х;
    А j - число одинаковых рангов в j-й связке по х;
    k - номера связок по порядку для признака у;
    В k - число одинаковых рангов в k-й связке по у.
    A = [(2 3 -2)]/12 = 0.5
    B = [(2 3 -2)]/12 = 0.5
    D = A + B = 0.5 + 0.5 = 1

    Связь между признаком Y и фактором X умеренная и прямая.
     


    Читайте:



    Завершился вывод войск ссср из афганистана

    Завершился вывод войск ссср из афганистана

    В 1987 году в Афганистане начала осуществляться политика национального примирения, принятая и одобренная на Пленуме ЦК НДПА в декабре 1986 года....

    Новое направление: инноватика Сложно ли учиться на инноватике

    Новое направление: инноватика Сложно ли учиться на инноватике

    Предоставляют массу возможностей для выбора профессионального направления. Многие из предметов и направлений обозначены достаточно непонятными...

    К чему снится племянница

    К чему снится племянница

    Учеными было установлено, что чаще всего, людям снится о любимых родственниках сон. Племянник, привидевшийся во время ночного отдыха, может...

    Репейник: толкование сновидения

    Репейник: толкование сновидения

    Сонник репейник толкует как символ стремления к особой защищенности от возможных неприятностей. Сон, в котором вы видели одиноко стоящий куст,...

    feed-image RSS