Главная - Септики
Отличие рациональных чисел от иррациональных. Иррациональные числа

Ранее мы уже показали, что $1\frac25$ — близко к $\sqrt2$. Если бы оно точно равнялось $\sqrt2$, . Тогда соотношение — $\frac{1\frac25}{1}$, которое можно превратить в соотношение целых чисел $\frac75$, умножив верхнюю и нижнюю части дроби на 5, и было бы искомой величиной.

Но, к сожалению, $1\frac25$ не является точной величиной $\sqrt2$. Более точный ответ $1\frac{41}{100}$, дает нам соотношение $\frac{141}{100}$. Еще большей точности мы достигаем, когда приравниваем $\sqrt2$ к $1\frac{207}{500}$. В этом случае соотношение в целых числах будет равно $\frac{707}{500}$. Но и $1\frac{207}{500}$ не является точным значением корня квадратного из 2. Греческие математики потратили массу времени и сил, чтобы вычислить точное значение $\sqrt2$, но это им так и не удалось. Они не смогли представить соотношение $\frac{\sqrt2}{1}$ в виде соотношения целых чисел.

Наконец, великий греческий математик Евклид доказал, что, как бы ни увеличивалась точность подсчетов, получить точное значение $\sqrt2$ невозможно. Не существует такой дроби, которая, будучи возведена в квадрат, даст в результате 2. Говорят, что первым к этому заключению пришел Пифагор, но этот необъяснимый факт настолько поразил ученого, что он поклялся сам и взял со своих учеников клятву хранить это открытие в тайне. Однако, возможно, эти сведения не соответствуют действительности.

Но если число $\frac{\sqrt2}{1}$ не может быть представлено в виде соотношения целых чисел, то и никакая , содержащая $\sqrt2$, например $\frac{\sqrt2}{2}$ или $\frac{4}{\sqrt2}$ также не может быть представлена в виде соотношения целых чисел, поскольку все такие дроби могут быть преобразованы в $\frac{\sqrt2}{1}$, умноженное на какое нибудь число. Так $\frac{\sqrt2}{2}=\frac{\sqrt2}{1} \times \frac12$. Или $\frac{\sqrt2}{1} \times 2=2\frac{\sqrt2}{1}$, что можно преобразовать, умножив верхнюю и нижнюю части на $\sqrt2$, и получить $\frac{4}{\sqrt2}$. (Не следует забывать, что независимо от того, что представляет собой число $\sqrt2$, если мы умножим его на $\sqrt2$, то получим 2.)

Поскольку число $\sqrt2$ нельзя представить в виде соотношения целых чисел, оно получило название иррационального числа . С другой стороны, все числа, которые можно представить в виде соотношения целых чисел, называются рациональными .

Рациональными являются все целые и дробные числа, как положительные, так и отрицательные.

Как оказалось, большинство квадратных корней являются иррациональными числами. Рациональные квадратные корни есть только у чисел, входящих в ряд квадратных чисел. Эти числа называются также идеальными квадратами. Рациональными числами являются также дроби, составленные из этих идеальных квадратов. Например, $\sqrt{1\frac79}$ является рациональным числом, так как $\sqrt{1\frac79}=\frac{\sqrt16}{\sqrt9}=\frac43$ или $1\frac13$ (4 - это корень квадратный из 16, а 3 - корень квадратный из 9).

Множество иррациональных чисел обычно обозначается заглавной латинской буквой I {\displaystyle \mathbb {I} } в полужирном начертании без заливки. Таким образом: I = R ∖ Q {\displaystyle \mathbb {I} =\mathbb {R} \backslash \mathbb {Q} } , то есть множество иррациональных чисел есть разность множеств вещественных и рациональных чисел.

О существовании иррациональных чисел, точнее отрезков , несоизмеримых с отрезком единичной длины, знали уже древние математики: им была известна, например, несоизмеримость диагонали и стороны квадрата, что равносильно иррациональности числа .

Энциклопедичный YouTube

  • 1 / 5

    Иррациональными являются:

    Примеры доказательства иррациональности

    Корень из 2

    Допустим противное: 2 {\displaystyle {\sqrt {2}}} рационален , то есть представляется в виде дроби m n {\displaystyle {\frac {m}{n}}} , где m {\displaystyle m} - целое число , а n {\displaystyle n} - натуральное число .

    Возведём предполагаемое равенство в квадрат:

    2 = m n ⇒ 2 = m 2 n 2 ⇒ m 2 = 2 n 2 {\displaystyle {\sqrt {2}}={\frac {m}{n}}\Rightarrow 2={\frac {m^{2}}{n^{2}}}\Rightarrow m^{2}=2n^{2}} .

    История

    Античность

    Концепция иррациональных чисел была неявным образом воспринята индийскими математиками в VII веке до нашей эры, когда Манава (ок. 750 г. до н. э. - ок. 690 г. до н. э.) выяснил, что квадратные корни некоторых натуральных чисел, таких как 2 и 61, не могут быть явно выражены [ ] .

    Первое доказательство существования иррациональных чисел обычно приписывается Гиппасу из Метапонта (ок. 500 гг. до н. э.), пифагорейцу . Во времена пифагорейцев считалось, что существует единая единица длины, достаточно малая и неделимая, которая целое число раз входит в любой отрезок [ ] .

    Нет точных данных о том, иррациональность какого числа было доказано Гиппасом. Согласно легенде он нашёл его изучая длины сторон пентаграммы. Поэтому разумно предположить, что это было золотое сечение [ ] .

    Греческие математики назвали это отношение несоизмеримых величин алогос (невыразимым), однако согласно легендам не воздали Гиппасу должного уважения. Существует легенда, что Гиппас совершил открытие, находясь в морском походе, и был выброшен за борт другими пифагорейцами «за создание элемента вселенной, который отрицает доктрину, что все сущности во вселенной могут быть сведены к целым числам и их отношениям». Открытие Гиппаса поставило перед пифагорейской математикой серьёзную проблему, разрушив лежавшее в основе всей теории предположение, что числа и геометрические объекты едины и неразделимы.

    Рациональным называется число, которое можно представить в виде дроби , где . Q– множество всех рациональных чисел.

    Рациональные числа подразделяются на: положительные, отрицательные и нуль.

    Каждому рациональному числу можно поставить в соответствие единственную точку координатной прямой. Отношению «левее» для точек соответствует отношение «меньше» для координат этих точек. Можно заметить, что всяко отрицательное число меньше нуля и всякого положительного числа; из двух отрицательных чисел меньше то, модуль которого больше. Так, -5.3<-4.1, т.к. |5.3|>|4.1|.

    Всякое рационально число можно представить десятичной периодической дробью. Например, .

    Алгоритмы действий над рациональными числами вытекают из правил знаков соответствующих действий над нулем и положительными дробями. В Qвыполняется деление, кроме деления на нуль.

    Любое линейное уравнение, т.е. уравнение вида ax+b=0, где , разрешимо на множестве Q, но не любое квадратное уравнение вида , разрешимо в рациональных числах. Не каждая точка координатной прямой имеет рациональную точку. Еще в конце VIв до. н. э в школе Пифагора было доказано, что диагональ квадрата не соизмерима с его высотой, что равносильно утверждению: «Уравнение не имеет рациональных корней». Всё перечисленное привело к необходимости расширения множества Q, было введено понятие иррационального числа. Обозначим множество иррациональных чисел буквой J .

    На координатной прямой иррациональные координаты имею все точки, которые не имеют рациональных координат. , где r– множеств действительных чисел. Универсальным способом задания действительных чисел являются десятичные дроби. Периодические десятичные дроби задают рациональные числа, а непериодические – иррациональные числа. Так, 2,03(52) – рациональное число, 2,03003000300003… (период каждой следующие цифрой «3» записывается на один нуль больше) – иррациональное число.

    Множества Qи Rобладают свойствами положительности: между любыми двумя рациональными числами существует рациональное число, например, есои a

    Для всякого иррационального числа α можно указать рациональное приближение как с недостатком так и с избытком с любой точностью: a< α

    Операция извлечения корня из некоторых рациональных чисел приводит к иррациональным числам. Извлечение корня натуральной степени – алгебраическая операция, т.е. ее введение связано с решение алгебраического уравнения вида . Если nнечетное, т.е. n=2k+1, где , то уравнение имеет единственный корень. Если nчетное, n=2k, где , то при a=0 уравнение имеет единственный корень х=0, при a<0 корней нет, при a>0 имеет два корня, которые противоположны друг другу. Извлечение корня – операция обратная операции возведение в натуральную степень.

    Арифметическим корнем (для краткости корнем) n-й степени из неотрицательного числа а называется неотрицательное число bкоторое является корнем уравнения . Корень n-ой степени из числа а обозначается символом . При n=2 степень корня 2 не указывается: .

    Например, , т.к. 2 2 =4 и 2>0; , т.к. 3 3 =27 и 3>0; не существует т.к. -4<0.

    При n=2kи a>0 корни уравнении (1) записываются так и . Например, корни уравнения х 2 =4 равны 2 и -2.

    При nнечетном уравнение (1) имеет единственный корень для любого . Если a≥0, то - корень этого уравнения. Если a<0, то –а>0 и - корень уравнения. Так, уравнение х 3 =27 имеет корень .

    От абстрактности математических понятий порой настолько веет и отстраненностью, что невольно возникает мысль: «Зачем это всё?». Но, несмотря на первое впечатление, все теоремы, арифметические операции, функции и т.п. – не более, чем желание удовлетворить насущные потребности. Особенно чётко это можно заметить на примере появления различных множеств.

    Всё началось с появления натуральных чисел. И, хотя, вряд ли сейчас кто-то сможет ответить, как точно это было, но скорее всего, ноги у царицы наук растут откуда-то из пещеры. Здесь, анализируя количество шкур, камней и соплеменников, человек множество «чисел для счёта». И этого ему было достаточно. До какого-то момента, конечно же.

    Дальше потребовалось шкуры и камни делить и отнимать. Так возникла потребность в арифметических операциях, а вместе с ними и рациональных , которые можно определить как дробь типа m/n, где, например, m - количество шкур, n – количество соплеменников.

    Казалось бы, уже открытого математического аппарата вполне достаточно, чтобы радоваться жизнью. Но вскоре оказалось, что случаи, когда результат не то, что не целое число, но даже не дробь! И, действительно, квадратный корень из двух никак иначе не выразить с помощью числителя и знаменателя. Или, например, всем известное число Пи, открытое древнегреческим учёным Архимедом, так же не является рациональным. И таких открытий со временем стало настолько много, что все неподдающиеся «рационализации» числа объединили и назвали иррациональными.

    Свойства

    Рассмотренные ранее множества принадлежат набору фундаментальных понятий математики. Это означает, что их не получится определить через более простые математические объекты. Но это можно сделать с помощью категорий (с греч. «высказывания») или постулатов. В данном случае лучше всего было обозначить свойства данных множеств.

    o Иррациональные числа определяют Дедекиндовы сечения в множестве рациональных чисел, у которых в нижнем нет наибольшего, а в верхнем нет наименьшего числа.

    o Каждое трансцендентное число является иррациональным.

    o Каждое иррациональное число является либо алгебраическим, либо трансцендентным.

    o Множество чисел всюду плотно на числовой прямой: между любыми имеется иррациональное число.

    o Множество несчётно, является множеством второй категории Бэра.

    o Это множество упорядоченное, т. е. для каждых двух различных рациональных чисел a иb можно указать, какое из них меньше другого.
    o Между каждыми двумя различными рациональными числами существует еще по крайней мере одно , а следовательно, и бесконечное множество рациональных чисел.

    o Арифметические действия (сложение, умножение и деление) над любыми двумя рациональными числами всегда возможны и дают в результате определенное рациональное же число. Исключением является деление на нуль, которое невозможно.

    o Каждое рациональное число может быть представлено в виде десятичной дроби (конечной или бесконечной периодической).

    С отрезком единичной длины, знали уже древние математики: им была известна, например, несоизмеримость диагонали и стороны квадрата, что равносильно иррациональности числа .

    Иррациональными являются:

    Примеры доказательства иррациональности

    Корень из 2

    Допустим противное: рационален , то есть представляется в виде несократимой дроби , где и - целые числа . Возведём предполагаемое равенство в квадрат:

    .

    Отсюда следует, что чётно, значит, чётно и . Пускай , где целое. Тогда

    Следовательно, чётно, значит, чётно и . Мы получили, что и чётны, что противоречит несократимости дроби . Значит, исходное предположение было неверным, и - иррациональное число.

    Двоичный логарифм числа 3

    Допустим противное: рационален , то есть представляется в виде дроби , где и - целые числа . Поскольку , и могут быть выбраны положительными. Тогда

    Но чётно, а нечётно. Получаем противоречие.

    e

    История

    Концепция иррациональных чисел была неявным образом воспринята индийскими математиками в VII веке до нашей эры, когда Манава (ок. 750 г. до н. э. - ок. 690 г. до н. э.) выяснил, что квадратные корни некоторых натуральных чисел, таких как 2 и 61, не могут быть явно выражены.

    Первое доказательство существования иррациональных чисел обычно приписывается Гиппасу из Метапонта (ок. 500 гг. до н. э.), пифагорейцу , который нашёл это доказательство, изучая длины сторон пентаграммы. Во времена пифагорейцев считалось, что существует единая единица длины, достаточно малая и неделимая, которая целое число раз входит в любой отрезок. Однако Гиппас обосновал, что не существует единой единицы длины, поскольку предположение о её существовании приводит к противоречию. Он показал, что если гипотенуза равнобедренного прямоугольного треугольника содержит целое число единичных отрезков, то это число должно быть одновременно и четным, и нечетным. Доказательство выглядело следующим образом:

    • Отношение длины гипотенузы к длине катета равнобедренного прямоугольного треугольника может быть выражено как a :b , где a и b выбраны наименьшими из возможных.
    • По теореме Пифагора: a ² = 2b ².
    • Так как a ² четное, a должно быть четным (так как квадрат нечетного числа был бы нечетным).
    • Поскольку a :b несократима, b обязано быть нечетным.
    • Так как a четное, обозначим a = 2y .
    • Тогда a ² = 4y ² = 2b ².
    • b ² = 2y ², следовательно b ² четное, тогда и b четно.
    • Однако было доказано, что b нечетное. Противоречие.

    Греческие математики назвали это отношение несоизмеримых величин алогос (невыразимым), однако согласно легендам не воздали Гиппасу должного уважения. Существует легенда, что Гиппас совершил открытие, находясь в морском походе, и был выброшен за борт другими пифагорейцами «за создание элемента вселенной, который отрицает доктрину, что все сущности во вселенной могут быть сведены к целым числам и их отношениям». Открытие Гиппаса поставило перед пифагорейской математикой серьёзную проблему, разрушив лежавшее в основе всей теории предположение, что числа и геометрические объекты едины и неразделимы.

    См. также

    Примечания

 


Читайте:



Завершился вывод войск ссср из афганистана

Завершился вывод войск ссср из афганистана

В 1987 году в Афганистане начала осуществляться политика национального примирения, принятая и одобренная на Пленуме ЦК НДПА в декабре 1986 года....

Новое направление: инноватика Сложно ли учиться на инноватике

Новое направление: инноватика Сложно ли учиться на инноватике

Предоставляют массу возможностей для выбора профессионального направления. Многие из предметов и направлений обозначены достаточно непонятными...

К чему снится племянница

К чему снится племянница

Учеными было установлено, что чаще всего, людям снится о любимых родственниках сон. Племянник, привидевшийся во время ночного отдыха, может...

Репейник: толкование сновидения

Репейник: толкование сновидения

Сонник репейник толкует как символ стремления к особой защищенности от возможных неприятностей. Сон, в котором вы видели одиноко стоящий куст,...

feed-image RSS