Главная - Выгребная яма
Общая характеристика алюминия. Смотреть что такое "Алюминий" в других словарях

Алюми́ний - элемент 13-й группы периодической таблицы химических элементов, третьего периода, с атомным номером 13. Относится к группе лёгких металлов. Наиболее распространённый металл и третий по распространённости химический элемент в земной коре (после кислорода и кремния).

Простое вещество алюминий - лёгкий, парамагнитный металл серебристо-белогоцвета, легко поддающийся формовке, литью, механической обработке. Алюминий обладает высокой тепло- иэлектропроводностью, стойкостью к коррозии за счёт быстрого образования прочных оксидных плёнок, защищающих поверхность от дальнейшего взаимодействия.

Современный метод получения, процесс Холла-Эру. Он заключается в растворении оксида алюминия Al2O3 в расплаве криолита Na3AlF6 с последующим электролизом с использованием расходуемых коксовых илиграфитовых анодных электродов. Такой метод получения требует очень больших затрат электроэнергии, и поэтому получил промышленное применение только в XX веке.

Лабораторный способ получения алюминия: восстановлением металлическим калием безводного хлорида алюминия (реакция протекает при нагревании без доступа воздуха):

Металл серебристо-белого цвета, лёгкий, плотность - 2,7 г/см³, температура плавления у технического алюминия - 658 °C, у алюминия высокой чистоты - 660 °C, высокая пластичность: у технического - 35 %, у чистого - 50 %, прокатывается в тонкий лист и даже фольгу. Алюминий обладает высокой электропроводностью (37·106 См/м) и теплопроводностью (203,5 Вт/(м·К)), 65 %, обладает высокой светоотражательной способностью.

Алюминий образует сплавы почти со всеми металлами. Наиболее известны сплавы с медью и магнием (дюралюминий) и кремнием(силумин).

По распространённости в земной коре Земли занимает 1-е место среди металлов и 3-е место среди элементов, уступая только кислороду и кремнию. Массовая концентрация алюминия в земной коре по данным различных исследователей оценивается от 7,45 до 8,14 %. В природе алюминий, в связи с высокой химической активностью, встречается почти исключительно в виде соединений.

Природный алюминий состоит практически полностью из единственного стабильного изотопа 27Al с ничтожными следами 26Al, наиболее долгоживущего радиоактивного изотопа с периодом полураспада 720 тыс. лет, образующегося в атмосфере при расщеплении ядер аргона 40Ar протонами космических лучей с высокими энергиями.

При нормальных условиях алюминий покрыт тонкой и прочной оксидной плёнкой и потому не реагирует с классическими окислителями: с H2O (t°), O2, HNO3 (без нагревания). Благодаря этому алюминий практически не подвержен коррозии и потому широко востребован современной промышленностью. Однако при разрушении оксидной плёнки (например, при контакте с растворами солей аммония NH4+, горячими щелочами или в результате амальгамирования), алюминий выступает как активный металл-восстановитель. Не допустить образования оксидной пленки можно, добавляя к алюминию такие металлы как галлий,индий или олово. При этом поверхность алюминия смачивают легкоплавкие эвтектики на основе этих металлов.


Легко реагирует с простыми веществами:

с кислородом, образуя оксид алюминия:

с галогенами (кроме фтора), образуя хлорид, бромид или иодид алюминия:

с другими неметаллами реагирует при нагревании:

со фтором, образуя фторид алюминия:

с серой, образуя сульфид алюминия:

с азотом, образуя нитрид алюминия:

с углеродом, образуя карбид алюминия:

Сульфид и карбид алюминия полностью гидролизуются:

Со сложными веществами:

с водой (после удаления защитной оксидной пленки, например, амальгамированием или растворами горячей щёлочи):

со щелочами (с образованием тетрагидроксоалюминатов и других алюминатов):

Легко растворяется в соляной и разбавленной серной кислотах:

При нагревании растворяется в кислотах - окислителях, образующих растворимые соли алюминия:

восстанавливает металлы из их оксидов (алюминотермия):

44.Соединения алюминия, их амфотерные свойства

Электронная конфигурация внешнего уровня алюминия … 3s23p1.

В возбужденном состоянии один из s-электронов переходит на свободную ячейку p-подуровня, такое состояние отвечает валентности III и степени окисления +3. Во внешнем электронном слое атома алюминия существуют свободные d-подуровни.

Важнейшие природные соединения – алюмосиликаты:

белая глина Al2O3 ∙ 2SiO2 ∙ 2H2O, полевой шпат K2O ∙ Al2O3 ∙ 6SiO2, слюда K2O ∙ Al2O3 ∙ 6SiO2 ∙ H2O

Из других природных форм нахождения алюминия наибольшее значение имеют бокситы А12Оз ∙ nН2О, минералы корунд А12Оз и криолит А1Fз ∙3NaF.

Легкий, серебристо-белый, пластичный металл, хорошо проводит электрический ток и тепло.

На воздухе алюминий покрывается тончайшей (0,00001 мм), но очень плотной пленкой оксида, предохраняющей металл от дальнейшего окисления и придающей ему матовый вид.

Оксид алюминия А12О3

Белое твердое вещество, нерастворимое в воде, температура плавления 20500С.

Природный А12О3 - минерал корунд. Прозрачные окрашенные кристаллы корунда - красный рубин – содержит примесь хрома - и синий сапфир - примесь титана и железа - драгоценные камни. Их получают так же искусственно и используют для технических целей, например, для изготовления деталей точных приборов, камней в часах и т.п.

Химические свойства

Оксид алюминия проявляет амфотерные свойства

1. взаимодействие с кислотами

А12О3 +6HCl = 2AlCl3 + 3H2O

2. взаимодействие со щелочами

А12О3 + 2NaOH – 2NaAlO2 + H2O

Al2O3 + 2NaOH + 5H2O = 2Na

3. при накаливании смеси оксида соответствующего металла с порошком алюминия происходит бурная реакция, ведущая к выделению из взятого оксида свободного металла. Метод восстановления при помощи Al (алюмотермия) часто применяют для получения ряда элементов (Cr, Мп, V, W и др.) в свободном состоянии

2А1 + WO3 = А12Оз + W

4. взаимодействие с солями, имеющими сильнощелочную среду, вследствие гидролиза

Al2O3 + Na2CO3 = 2 NaAlO2 + CO2

Гидроксид алюминия А1(ОН)3

А1(ОН)3 представляет собой объемистый студенистый осадок белого цвета, практически нерастворимый в воде, но легко растворяющийся в кислотах и сильных щелочах. Он имеет, следовательно, амфотерный характер.

Получают гидроксид алюминия реакцией обмена растворимых солей алюминия со щелочами

AlCl3 + 3NaOH = Al(OH)3↓ + 3NaCl

Al3+ + 3OH- = Al(OH)3↓

Данную реакцию можно использовать как качественную на ион Al3+

Химические свойства

1. взаимодействие с кислотами

Al(OH)3 +3HCl = 2AlCl3 + 3H2O

2. при взаимодействии с сильными щелочами образуются соответствующие алюминаты:

NaOH + А1(ОН)з = Na

3. термическое разложение

2Al(OH)3 = Al2О3 + 3H2O

Соли алюминияподвергаются гидролизу по катиону, среда кислая (рН < 7)

Al3+ + Н+ОН- ↔ AlОН2+ + Н+

Al(NO3)3 + H2O↔ AlOH(NO3)2 + HNO3

Растворимые соли алюминия и слабых кислот подвергаются полному (необратимому гидролизу)

Al2S3+ 3H2O = 2Al(OH)3 +3H2S

Оксид алюминия Al2O3 – входит в состав некоторых антацидных средств (например, Almagel), используется при повышенной кислотности желудочного сока.

КAl(SO4)3 12H2О – алюмокалиевые квасцы применяются в медицине для лечения кожных заболеваний, как кровоостанавливающие средство. А также используют как дубильное вещество в кожевенной промышленности.

(CH3COO)3Al - Жидкость Бурова- 8% раствор ацетата алюминия оказывает вяжущее и противовоспалительное действие, в больших концентрациях обладает умеренными антисептическими свойствами. Применяется в разведенном виде для полоскания, примочек, при воспалительных заболеваниях кожи и слизистых оболочек.

AlCl3 - применяется в качестве катализатора в органическом синтезе.

Al2(SO4)3 · 18 H20 – применяется при очистки воды.

Алюминий в чистом виде впервые выделен Фридрихом Велером. Немецкий химик нагрел безводный хлорид элемента с металлическим калием. Произошло это во 2-ой половине 19-го века. До 20-го столетия кг алюминия стоил дороже .

Новый металл позволяли себе лишь богачи и государственные . Причина высокой стоимости – сложность отделения алюминия от других веществ. Метод добычи элемента в промышленных масштабах предложил Чарльз Холл.

В 1886-ом году он растворил оксид в расплаве криолита. Немец заключил смесь в гранитный сосуд и подключил к нему электрический ток. На дно емкости осели бляшки чистого металла.

Химические и физические свойства алюминия

Какой алюминий? Серебристо-белый, блестящий. Поэтому, Фридрих Велер сравнивал полученные им гранулы металла с . Но, была оговорка, — алюминий значительно легче.

Пластичность же приближена к драгоценным и . Алюминий – вещество , без проблем вытягивающееся в тонкую проволоку и листы. Достаточно вспомнить фольгу. Она делается на основе 13-го элемента.

Алюминий легок за счет небольшой плотности. Она втрое меньше, чем у и железа. При этом в прочности 13-ый элемент почти не уступает.

Такое сочетание сделало серебристый металл незаменимым в промышленности, к примеру, производстве деталей для автомобилей. Речь идет и о кустарном производстве, ведь сварка алюминия возможна даже в домашних условиях.

Формула алюминия позволяет активно отражать световые, но и тепловые лучи. Высока и электропроводность элемента. Главное, излишне не нагревать его. При 660-ти градусах расплавится. Поднимись температура чуть выше – сгорит.

Металл исчезнет, останется лишь оксид алюминия . Он образуется и в стандартных условиях, но лишь в виде поверхностной пленки. Она защищает металл. Поэтому, он неплохо противостоит коррозии, ведь доступ кислорода блокирован.

Оксидная пленка защищает металл и от воды. Если удалить с поверхности алюминия налет, запустится реакция с Н 2 О. Выделение газов водорода произойдет даже при комнатной температуре. Так что, алюминиевая лодка не превращается в дым лишь за счет оксидной пленки и защитной краски, нанесенной на корпус судна.

Наиболее активно взаимодействие алюминия с неметаллами. Реакции с бромом и хлором проходят даже при обычны условиях. В итоге, образуются соли алюминия . Соли водорода получаются, если соединить 13-ый элемент с растворами кислот. Реакция состоится и со щелочами, но лишь после удаления оксидной пленки. Выделится чистый водород.

Применение алюминия

Металл напыляют на зеркала. Пригождаются высокие показатели отражения света. Процесс проходит в условиях вакуума. Изготавливают не только стандартные зеркала, но предметы с зеркальными поверхностями. Таковыми становятся: керамическая плитка, бытовая техника, светильники.

Дуэт алюминий-медь – основа дюралюминий. Попросту его называют дюраль. В качестве добавляют . Состав прочнее чистого алюминия в 7 раз, поэтому, подходит для области машиностроения и авиаконструирования.

Медь придает 13-му элементу прочность, но не тяжесть. Дюраль остается в 3 раза легче железа. Небольшая масса алюминия – залог легкости авто, самолетов, кораблей. Это упрощает перевозку, эксплуатацию, снижает цену продукции.

Купить алюминий автопромышленники стремятся еще и потому, что на его сплавы легко наносятся защитные и декоративные составы. Краска ложится быстрее и ровнее, чем на сталь, пластик.

При этом, сплавы податливы, просто обрабатываются. Это ценно, учитывая массу изгибов и конструктивных переходов на современных моделях автомобилей.

13-ый элемент не только легко красится, но и сам может выступать в роли красителя. В текстильной промышленности закупается сульфат алюминия . Он же пригождается в печатном деле, где требуются нерастворимые пигменты.

Интересно, что раствор сульфата алюминия применяют еще и для очистки воды. В присутствии «агента» вредные примеси выпадают в осадок, нейтрализуются.

Нейтрализует 13-ый элемент и кислоты. Особенно хорошо с этой ролью справляется гидроксид алюминия . Его ценят в фармакологии, медицине, добавляя в лекарства от изжоги.

Выписывают гидроксид и при язвах, воспалительных процессах кишечного тракта. Так что в аптечных препарата тоже есть алюминий. Кислота в желудке – повод узнать о таких лекарствах побольше.

В СССР и бронзы с 11-процентной добавкой алюминия чеканили . Достоинство знаков – 1, 2 и 5 копеек. Начали выпускать в 1926-ом, закончили в 1957-ом году. А вот производство алюминиевых банок для консервов не прекратили.

Тушенку, сайру и прочие завтраки туристов до си пор упаковывают в тару на основе 13-го элемента. Такие банки не вступают в реакцию с продуктами питания, при этом, легки и дешевы.

Порошок алюминия входит в состав многих взрывчатых смесей, в том числе и пиротехники. В промышленности применяют подрывные механизмы на основе тринитротолуола и измельченного 13-го элемента. Мощная взрывчатка получается и при добавлении к алюминию аммиачной селитры.

В нефтяной отрасли необходим хлорид алюминия . Он играет роль катализатора при разложении органики на фракции. У нефти есть свойство выделять газообразные, легкие углеводороды бензинового типа, взаимодействуя с хлоридом 13-го металла. Реагент должен быть безводным. После добавления хлорида, смесь прогревают до 280-ти градусов Цельсия.

В строительстве нередко смешиваю натрий и алюминий . Получается присадка к бетону. Алюминат натрия ускоряет его затвердение за счет убыстрения гидратации.

Повышается скорость микрокристаллизации, значит, увеличивается прочность и твердость бетона. К тому же, алюминат натрия спасает арматуру, уложенную в раствор, от коррозии.

Добыча алюминия

Металл замыкает тройку самых распространенных на земле. Это объясняет его доступность и широкое применение. Однако, в чистом виде природа элемент человеку не дает. Алюминий приходится выделять из различных соединений. Больше всего 13-го элемента в бокситах. Это глиноподобные породы, сосредоточенные, в основном, в тропическом поясе.

Бокситы дробят, потом сушат, снова дробят и перемалывают в присутствии небольшого объема воды. Получается густая масса. Ее нагревают паром. При этом большая часть , коим бокситы тоже не бедны, испаряется. Остается оксид 13-го металла.

Его помещают в промышленные ванны. В них уже находится расплавленный криолит. Температура держится на отметке 950 градусов Цельсия. Нужен и электрический ток силой минимум в 400 кА. То есть, используется электролиз, как и 200 лет назад, когда элемент выделял Чарльз Холл.

Проходя через раскаленный раствор, ток разрывает связи между металлом и кислородом. В итоге, на дне ванн остается чистый алюминий. Реакции окончены. Завершает процесс отливание из осадка и их отправка потребителю, или же, использование для формирования различных сплавов.

Основные производства алюминия находятся там же, где и залежи бокситов. В передовика – Гвинея. В ее недрах скрыто почти 8 000 000 тонн 13-го элемента. На 2-ом месте Австралия с показателем в 6 000 000. В Бразилии алюминия уже в 2 раза меньше. Общемировые же запасы оцениваются в 29 000 000 тонн.

Цена алюминия

За тонну алюминия просят почти 1 500 долларов США. Таковы данные бирж цветных металлов на 20 января 2016-го. Стоимость устанавливается, в основном, промышленниками. Точнее, на цену алюминия влияет их спрос на сырье. Влияет на запросы поставщиков и стоимость электроэнергии, ведь производство 13-го элемента энергоемко.

Иные цены установлены на алюминия. Он идет на переплавку. Стоимость оглашается за килограмм, причем, имеет значение характер сдаваемого материала.

Так, за электротехнический металл дают примерно 70 рублей. За пищевой алюминий можно получить на 5-10 рублей меньше. Столько же платят за моторный металл. Если сдается разносортица, ее цена – 50-55 рублей за килограмм.

Самый дешевый вид лома – стружка алюминия. За нее удается выручить лишь 15-20 рублей. Чуть больше дадут за из 13-го элемента. Имеется в виду тара из-под напитков, консервов.

Невысоко ценят и алюминиевые радиаторы. Цена за килограмм лома – около 30-ти рублей. Это усредненные показатели. В разных регионах, на разных точках алюминий принимают дороже, либо дешевле. Нередко стоимость материалов зависит от сдаваемых объемов.

Представляет собой самый распространенный металл в земной коре. Он относится к группе легких металлов, имеет небольшую плотность и температуру плавления. При этом пластичность и электропроводность находятся на высоком уровне, что обеспечивает его . Итак, давайте узнаем, каковы удельная температура плавления алюминия и его сплавов (пр. в сравнении с и ), тепло- и электропроводность, плотность, другие свойства, а также в чем особенности структуры сплавов алюминия и химического их состава.

Для начала нашему рассмотрению подлежат структура и хим.состав алюминия. Предел прочности чистого алюминия крайне небольшой и составляет до 90 МПа. Если же к его составу добавить в небольшом соотношении марганец, или магний, прочность может возрасти до 700 МПа. К такому же результату приведет использование особой термической обработки.

Металл, обладающий наиболее высокой чистотой (99,99% алюминия), может применяться в специальных и лабораторных целях, в остальных же случаях с технической чистотой. Наиболее распространенными примесями в нем могут выступать кремний и железо, которые практически не растворяются в алюминии. В результате их добавки уменьшается пластичность и повышается прочность конечного металла.

Структура алюминия представлена элементарными ячейками, которые в свою очередь состоят из четырех атомов. Теоретически плотность данного металла составляет 2698 кг/м 3 .

Теперь поговорим о свойствах металла алюминия.

Данное видео расскажет о структуре алюминия:

Свойства и характеристики

Свойствами металла служат его высокие показатели тепло- и электропроводности, невосприимчивость к коррозии, высокая пластичность и устойчивость к низким температурам. При этом главное его свойство – это небольшая плотность (около 2,7 г/см 3 .).

Механические, технологические, а также физико-химические свойства этого металла имеют непосредственную зависимость от входящих в его состав примесей. К естественным его компонентам относится и .

Основные параметры

  • Плотность алюминия составляет 2,7*10 3 кг/м 3 ;
  • Удельный вес — 2,7 г /cм 3 ;
  • Температура плавления алюминия 659°C;
  • Температура кипения 2000°C;
  • Коэффициент линейного расширения составляет — 22,9 *10 6 (1/град).

Теперь рассмотрению подлежат теплопроводность и электропроводность алюминия.

Данное видео сравнивает температуры плавления алюминия и других наиболее часто используемых металлов:

Электропроводность

Важным показателем алюминия является его электропроводность, которая уступает по величине лишь золоту, серебру и . Высокий коэффициент электропроводности в сочетании с небольшой плотностью обеспечивает материалу высокую конкурентоспособность в кабельно-проводниковой области.

Помимо основных примесей на этот показатель также влияет , марганец и хром. Если алюминий предназначен для производства проводников тока, то суммарное количество примесей не должно превышать 0,01%.

  • Показатель электропроводности может варьироваться, в зависимости от состояния, в котором находится алюминий. Процесс длительного отжига увеличивает этот показатель, а нагартовка, напротив, уменьшает его.
  • Удельное сопротивление при температуре 20 0 С в зависимости от марки металла находится в пределах 0,0277-0,029 мкОм*м.

Теплопроводность

Коэффициент теплопроводности металла составляет около 0,50 кал/см*с*С и увеличивается со степенью его чистоты.

Это значение меньше, чем у и серебра, но больше, чем у остальных металлов. Благодаря ему, алюминий активно используется в производстве теплообменников и радиаторов.

Коррозионная стойкость

Сам металл является химически активным веществом, благодаря чему его используют в алюмотермии. При контакте с воздухом на нем образуется тончайшая пленка из окиси алюминия, которая имеет химическую инертность и высокую прочность. Ее главное назначение – это защищать металл от последующего процесса окисления, а также от воздействия коррозии.

  • Если алюминий обладает высокой чистотой, то эта пленка не имеет пор, полностью покрывает его поверхность и обеспечивает надежным сцеплением. В результате металл устойчив не только к воде и воздуху, но и к щелочам и неорганическим кислотам.
  • В тех местах, где находятся примеси, защитный слой пленки может быть поврежденным. Такие места становятся уязвимыми для коррозии. Поэтому на поверхности может наблюдаться коррозия точечного типа. Если марка содержит 99,7% алюминия и менее 0,25% железа, скорость коррозии составляет 1.1, при содержании алюминия на 99,0% этот показатель увеличивается до 31.
  • Содержащееся железо также уменьшает устойчивость металла к щелочам, но не меняет устойчивость к серной и азотной кислотам.

Взаимодействие с разными веществами

Когда алюминий обладает температурой 100 0 С, он способен взаимодействовать с хлором. Независимо от степени нагрева, алюминий растворяет водород, но при этом не ступает в реакцию с ним. Именно потому он является главным составляющим элементом газов, которые присутствуют в металле.

В целом алюминий устойчив в следующих средах:

  • Пресная и морская вода;
  • Соли магния, натрия и аммония;
  • Серная кислота;
  • Слабые растворы из хрома и фосфора;
  • Раствор аммиака;
  • Уксусная, яблочная и прочие кислоты.

Алюминий не устойчив:

  • Раствор из серной кислоты;
  • Соляная кислота;
  • Едкие щелочи и их раствор;
  • Щавелевая кислота.

Про токсичность и экологичность алюминия читайте ниже.

Электропроводность меди и алюминия, а также иные сравнения двух металлов представлены в таблице ниже.

Сравнение характеристик алюминия и меди

Токсичность

Хотя алюминий весьма распространен, но он не используется в метаболизме, ни у одного живого существа. Он обладает незначительным токсическим действием, но многие его неорганические соединения, которые растворяются в воде, способны длительное время пребывать в таком состоянии и негативно сказываться на живых организмах. Наиболее ядовитыми веществами выступают ацетаты, хлориды и нитраты.

Согласно нормативам, в воде хозяйственно-питьевого назначения может содержаться 0,2-0,5 мг на 1 л.

Еще больше полезной информации о свойствах алюминия содержит данное видео:

Получение алюмокалиевых квасцов

Алюминий (лат. Aluminium), – в периодической системе алюминий находится в третьем периоде, в главной подгруппе третьей группы. Заряд ядра +13. Электронное строение атома 1s 2 2s 2 2p 6 3s 2 3p 1 . Металлический атомный радиус 0,143 нм, ковалентный – 0,126 нм, условный радиус иона Al 3+ – 0,057 нм. Энергия ионизации Al – Al + 5,99 эВ.

Наиболее характерная степень окисления атома алюминия +3. Отрицательная степень окисления проявляется редко. Во внешнем электронном слое атома существуют свободные d-подуровни. Благодаря этому его координационное число в соединениях может равняться не только 4 (AlCl 4- , AlH 4- , алюмосиликаты), но и 6 (Al 2 O 3 , 3+).

Историческая справка . Название Алюминий происходит от лат. alumen – так еще за 500 лет до н.э. назывались алюминиевые квасцы, которые применялись как протрава при крашении тканей и для дубления кожи. Датский ученый X. К. Эрстед в 1825, действуя амальгамой калия на безводный АlСl 3 и затем отгоняя ртуть, получил относительно чистый Алюминий. Первый промышленного способ производства Алюминия предложил в 1854 французский химик А.Э. Сент-Клер Девиль: способ заключался в восстановлении двойного хлорида Алюминия и натрия Na 3 AlCl 6 металлическим натрием. Похожий по цвету на серебро, Алюминий на первых порах ценился очень дорого. С 1855 по 1890 годы было получено всего 200 т Алюминия. Современный способ получения Алюминия электролизом криолитоглиноземного расплава разработан в 1886 году одновременно и независимо друг от друга Ч. Холлом в США и П. Эру во Франции.

Нахождение в природе

Алюминий – самый распространенный в земной коре металл. На его долю приходится 5,5–6,6 мол. доли% или 8 масс.%. Главная масса его сосредоточена в алюмосиликатах. Чрезвычайно распространенным продуктом разрушения образованных ими горных пород является глина, основной состав которой отвечает формуле Al 2 O 3 . 2SiO 2 . 2H 2 O. Из других природных форм нахождения алюминия наибольшее значение имеют боксит Al 2 O 3 . xH 2 O и минералы корунд Al 2 O 3 и криолит AlF 3 . 3NaF.

Получение

В настоящее время в промышленности алюминий получают электролизом раствора глинозема Al 2 O 3 в расплавленнном криолите. Al 2 O 3 должен быть достаточно чистым, поскольку из выплавленного алюминия примеси удаляются с большим трудом. Температура плавления Al 2 O 3 около 2050 о С, а криолита – 1100 о С. Электролизу подвергают расплавленную смесь криолита и Al 2 O 3 , содержащую около 10 масс.% Al 2 O 3 , которая плавится при 960 о С и обладает электрической проводимостью, плотностью и вязкостью, наиболее благоприятствующими проведению процесса. При добавлении AlF 3 , CaF 2 и MgF 2 проведение электролиза оказывается возможным при 950 о С.

Электролизер для выплавки алюминия представляет собой железный кожух, выложенный изнутри огнеупорным кирпичом. Его дно (под), собранное из блоков спрессованного угля, служит катодом. Аноды располагаются сверху: это – алюминиевые каркасы, заполненные угольными брикетами.

Al 2 O 3 = Al 3+ + AlO 3 3-

На катоде выделяется жидкий алюминий:

Al 3+ + 3е - = Al

Алюминий собирается на дне печи, откуда периодически выпускается. На аноде выделяется кислород:

4AlO 3 3- – 12е - = 2Al 2 O 3 + 3O 2

Кислород окисляет графит до оксидов углерода. По мере сгорания углерода анод наращивают.

Алюминий, кроме того, применяется как легирующая добавка ко многим сплавам для придания им жаростойкости.

Физические свойства алюминия . Алюминий сочетает весьма ценный комплекс свойств: малую плотность, высокие теплопроводность и электрическую проводимость, высокую пластичность и хорошую коррозионную стойкость. Он легко поддается ковке, штамповке, прокатке, волочению. Алюминий хорошо сваривается газовой, контактной и других видами сварки. Решетка Алюминия кубическая гранецентрированная с параметром а = 4,0413 Å. Свойства Алюминий, как и всех металлов, в значит, степени зависят от его чистоты. Свойства Алюминия особой чистоты (99,996%): плотность (при 20 °С) 2698,9 кг/м 3 ; t пл 660,24 °С; t кип около 2500 °С; коэффициент термического расширения (от 20° до 100 °С) 23,86·10 -6 ; теплопроводность (при 190 °С) 343 вт/м·К , удельная теплоемкость (при 100 °С) 931,98 дж/кг·К. ; электропроводность по отношению к меди (при 20 °С) 65,5%. Алюминий обладает невысокой прочностью (предел прочности 50–60 Мн/м 2), твердостью (170 Мн/м 2 по Бринеллю) и высокой пластичностью (до 50%). При холодной прокатке предел прочности Алюминия возрастает до 115 Мн/м 2 , твердость – до 270 Мн/м 2 , относительное удлинение снижается до 5% (1 Мн/м 2 ~ и 0,1 кгс/мм 2). Алюминий хорошо полируется, анодируется и обладает высокой отражательной способностью, близкой к серебру (он отражает до 90% падающей световой энергии). Обладая большим сродством к кислороду, Алюминий на воздухе покрывается тонкой, но очень прочной пленкой оксида Al 2 О 3 , защищающей металл от дальнейшего окисления и обусловливающей его высокие антикоррозионные свойства. Прочность оксидной пленки и защитное действие ее сильно убывают в присутствии примесей ртути, натрия, магния, меди и др. Алюминий стоек к действию атмосферной коррозии, морской и пресной воды, практически не взаимодействует с концентрированной или сильно разбавленной азотной кислотой, с органических кислотами, пищевыми продуктами.

Химические свойства

При накаливании мелко раздробленного алюминия он энергично сгорает на воздухе. Аналогично протекает и взаимодействие его с серой. С хлором и бромом соединение происходит уже при обычной температуре, с иодом – при нагревании. При очень высоких температурах алюминий непосредственно соединяется также с азотом и углеродом. Напротив, с водородом он не взаимодействует.

По отношению к воде алюминий вполне устойчив. Но если механическим путем или амальгамированием снять предохраняющее действие оксидной пленки, то происходит энергичная реакция:

Сильно разбавленные, а также очень концентрированные HNO3 и H2SO4 на алюминий почти не действуют (на холоду), тогда как при средних концентрациях этих кислот он постепенно растворяется. Чистый алюминий довольно устойчив и по отношению к соляной кислоте, но обычный технический металл в ней растворяется.

При действии на алюминий водных растворов щелочей слой оксида растворяется, причем образуются алюминаты – соли, содержащие алюминий в составе аниона:

Al 2 O 3 + 2NaOH + 3H 2 O = 2Na

Алюминий, лишенный защитной пленки, взаимодействует с водой, вытесняя из нее водород:

2Al + 6H 2 O = 2Al(OH) 3 + 3H 2

Образующийся гидроксид алюминия реагирует с избытком щелочи, образуя гидроксоалюминат:

Al(OH) 3 + NaOH = Na

Суммарное уравнение растворения алюминия в водном растворе щелочи:

2Al + 2NaOH + 6H 2 O = 2Na + 3H 2

Алюминий заметно растворяется в растворах солей, имеющих вследствие их гидролиза кислую или щелочную реакцию, например, в растворе Na 2 CO 3 .

В ряду напряжений он располагается между Mg и Zn. Во всех своих устойчивых соединениях алюминий трехвалентен.

Соединение алюминия с кислородом сопровождается громадным выделением тепла (1676 кДж/моль Al 2 O 3), значительно большим, чем у многих других металлов. В виду этого при накаливании смеси оксида соответствующего металла с порошком алюминия происходит бурная реакция, ведущая к выделению из взятого оксида свободного металла. Метод восстановления при помощи Al (алюмотермия) часто применяют для получения ряда элементов (Cr, Mn, V, W и др.) в свободном состоянии.

Алюмотермией иногда пользуются для сварки отдельных стальных частей, в часности стыков трамвайных рельсов. Применяемая смесь («термит») состоит обычно из тонких порошков алюминия и Fe 3 O 4 . Поджигается она при помощи запала из смеси Al и BaO 2 . Основная реакция идет по уравнению:

8Al + 3Fe 3 O 4 = 4Al 2 O 3 + 9Fe + 3350 кДж

Причем развивается температура около 3000 о С.

Оксид алюминия представляет собой белую, очень тугоплавкую (т. пл. 2050 о С) и нерастворимую в воде массу. Природный Al 2 O 3 (минерал корунд), а также полученный искусственно и затем сильно прокаленный отличается большой твердостью и нерастворимостью в кислотах. В растворимое состояние Al 2 O 3 (т. н. глинозем) можно перевести сплавлением со щелочами.

Обычно загрязненный оксидом железа природный корунд вследствие своей чрезвычайной твердости применяется для изготовления шлифовальных кругов, брусков и т.д. В мелко раздробленном виде он под названием наждака служит для очистки металлических поверхностей и изготовления наждачной бумаги. Для тех же целей часто пользуются Al 2 O 3 , получаемым сплавлением боксита (техническое название – алунд).

Прозрачные окрашеннные кристаллы корунда – красный рубин – примесь хрома – и синий сапфир – примесь титана и железа – драгоценные камни. Их получают так же искусственно и используют для технических целей, например, для изготовления деталей точных приборов, камней в часах и т.п. Кристаллы рубинов, содержащих малую примесь Cr 2 O 3 , применяют в качестве квантовых генераторов – лазеров, создающих направленный пучок монохроматического излучения.

Ввиду нерастворимости Al 2 O 3 в воде отвечающий этому оксиду гидроксид Al(OH) 3 может быть получен лишь косвенным путем из солей. Получение гидроксида можно представить в виде следующей схемы. При действии щелочей ионами OH – постепенно замещаются в аквокомплексах 3+ молекулы воды:

3+ + OH - = 2+ + H 2 O

2+ + OH - = + + H 2 O

OH - = 0 + H 2 O

Al(OH) 3 представляет собой объемистый студенистый осадок белого цвета, практически нерастворимый в воде, но легко растворяющийся в кислотах и сильных щелочах. Он имеет, следовательно, амфотерный характер. Однако и основные и особенно кислотные его свойства выражены довольно слабо. В избытке NH 4 OH гидроксид алюминия нерастворим. Одна из форм дегидратированного гидроксида – алюмогель используется в технике в качестве адсорбента.

При взаимодействии с сильными щелочами образуются соответствующие алюминаты:

NaOH + Al(OH) 3 = Na

Алюминаты наиболее активных одновалентных металлов в воде хорошо растворимы, но ввиду сильного гидролиза растворы их устойчивы лишь при наличии достаточного избытка щелочи. Алюминаты, производящиеся от более слабых оснований, гидролизованы в растворе практически нацело и поэтому могут быть получены только сухим путем (сплавлением Al 2 O 3 с оксидами соответствующих металлов). Образуются метаалюминаты, по своему составу производящиеся от метаалюминиевой кислоты HAlO 2 . Большинство из них в воде нерастворимо.

С кислотами Al(OH) 3 образует соли. Производные большинства сильных кислот хорошо растворимы в воде, но довольно значительно гидролизованы, и поэтому растворы их показывают кислую реакцию. Еще сильнее гидролизованы растворимые соли алюминия и слабых кислот. Вследствие гидролиза сульфид, карбонат, цианид и некоторые другие соли алюминия из водных растворов получить не удается.

В водной среде анион Al 3+ непосредственно окружен шестью молекулами воды. Такой гидратированный ион несколько диссоциирован по схеме:

3+ + H 2 O = 2+ + OH 3 +

Константа его диссоциации равна 1 . 10 -5 , т.е. он является слабой кислотой (близкой по силе к уксусной). Октаэдрическое окружение Al 3+ шестью молекулами воды сохраняется и в кристаллогидратах ряда солей алюминия.

Алюмосиликаты можно рассматривать как силикаты, в которых часть кремниекислородных тетраэдров SiO 4 4 – заменена на алюмокислородные тетраэдры AlO 4 5- Из алюмосиликатов наиболее распространены полевые шпаты, на долю которых приходится более половины массы земной коры. Главные их представители – минералы

ортоклаз K 2 Al 2 Si 6 O 16 или K 2 O . Al 2 O 3 . 6SiO 2

альбит Na 2 Al 2 Si 6 O 16 или Na 2 O . Al 2 O 3 . 6SiO 2

анортит CaAl 2 Si 2 O 8 или CaO . Al 2 O 3 . 2SiO 2

Очень распространены минералы группы слюд, например мусковит Kal 2 (AlSi 3 O 10) (OH) 2 . Большое практическое значение имеет минерал нефелин (Na, K) 2 , который используется для получения глинозема содовых продуктов и цемента. Это производство складывается из следующих операций: a) нефелин и известняк спекают в трубчатых печах при 1200 о С:

(Na, K) 2 + 2CaCO 3 = 2CaSiO 3 + NaAlO 2 + KAlO 2 + 2CO 2

б) образовавшуюся массу выщелачивают водой – образуется раствор алюминатов натрия и калия и шлам CaSiO 3:

NaAlO 2 + KAlO 2 + 4H 2 O = Na + K

в) через раствор алюминатов пропускают образовавшийся при спекании CO 2:

Na + K + 2CO 2 = NaHCO 3 + KHCO 3 + 2Al(OH) 3

г) нагреванием Al(OH) 3 получают глинозем:

2Al(OH) 3 = Al 2 O 3 + 3H 2 O

д) выпариванием маточного раствора выделяют соду и потаж, а ранее полученный шлам идет на производство цемента.

При производстве 1 т Al 2 O 3 получают 1 т содопродуктов и 7.5 т цемента.

Некоторые алюмосиликаты обладают рыхлой структурой и способны к ионному обмену. Такие силикаты – природные и особенно искусственные – применяются для водоумягчения. Кроме того, благодаря своей сильно развитой поверхности, они используются в качестве носителей катализаторов, т.е. как материалы, пропитываемые катализатором.

Галогениды алюминия в обычных условиях – бесцветные кристаллические вещества. В ряду галогенидов алюминия AlF 3 сильно отличается по свойствам от своих аналогов. Он тугоплавок, мало растворяется в воде, химически неактивен. Основной способ получения AlF 3 основан на действии безводного HF на Al 2 O 3 или Al:

Al 2 O 3 + 6HF = 2AlF 3 + 3H 2 O

Соединения алюминия с хлором, бромом и иодом легкоплавки, весьма реакционноспособны и хорошо растворимы не только в воде, но и во многих органических растворителях. Взаимодействие галогенидов алюминия с водой сопровождается значительным выделением теплоты. В водном растворе все они сильно гидролизованы, но в отличие от типичных кислотных галогенидов неметаллов их гидролиз неполный и обратимый. Будучи заметно летучими уже при обычных условиях, AlCl 3 , AlBr 3 и AlI 3 дымят во влажном воздухе (вследствие гидролиза). Они могут быть получены прямым взаимодействием простых веществ.

Плотности паров AlCl 3 , AlBr 3 и AlI 3 при сравнительно невысоких температурах более или менее точно соответствуют удвоенным формулам – Al 2 Hal 6 . Пространственная структура этих молекул отвечает двум тетраэдрам с общим ребром. Каждый атом алюминия связан с четырьмя атомами галогена, а каждый из центральных атомов галогена – с обоими атомами алюминия. Из двух связей центрального атома галогена одна является донорно-акцепторной, причем алюминий функционирует в качестве акцептора.

С галогенидными солями ряда одновалентных металлов галогениды алюминия образуют комплексные соединения, главным образом типов M 3 и M (где Hal – хлор, бром или иод). Склонность к реакциям присоединения вообще сильно выражена у рассматриваемых галогенидов. Именно с этим связано важнейшее техническое применение AlCl 3 в качестве катализатора (при переработке нефти и при органических синтезах).

Из фторалюминатов наибольшее применение (для получения Al, F 2 , эмалей, стекла и пр.) имеет криолит Na 3 . Промышленное производство искусственного криолита основано на обработке гидроксида алюминия плавиковой кислотой и содой:

2Al(OH) 3 + 12HF + 3Na 2 CO 3 = 2Na 3 + 3CO 2 + 9H 2 O

Хлоро-, бромо- и иодоалюминаты получаются при сплавлении тригалогенидов алюминия с галогенидами соответствующих металлов.

Хотя с водородом алюминий химически не взаимодействует, гидрид алюминия можно получить косвенным путем. Он представляет собой белую аморфную массу состава (AlH 3) n . Разлагается при нагревании выше 105 о С с выделением водорода.

При взаимодействии AlH 3 с основными гидридами в эфирном растворе образуются гидроалюминаты:

LiH + AlH 3 = Li

Гидридоалюминаты – белые твердые вещества. Бурно разлагаются водой. Они – сильные восстановители. Применяются (в особенности Li) в органическом синтезе.

Сульфат алюминия Al 2 (SO 4) 3 . 18H 2 O получается при действии горячей серной кислоты на оксид алюминия или на каолин. Применяется для очистки воды, а также при приготовлении некоторых сортов бумаги.

Алюмокалиевые квасцы KAl(SO 4) 2 . 12H 2 O применяются в больших количествах для дубления кож, а также в красильном деле в качестве протравы для хлопчатобумажных тканей. В последнем случае действие квасцов основано на том, что образующиеся вследствие их гидролиза гидроксид алюминия отлагается в волокнах ткани в мелкодисперсном состоянии и, адсордбируя краситель, прочно удерживает его на волокне.

Из остальных производных алюминия следует упомянуть его ацетат (иначе – уксуснокислую соль) Al(CH 3 COO) 3 , используемый при крашении тканей (в качестве протравы) и в медицине (примочки и компрессы). Нитрат алюминия легко растворим в воде. Фосфат алюминия нерастворим в воде и уксусной кислоте, но растворим в сильных кислотах и щелочах.

Алюминий в организме . Алюминий входит в состав тканей животных и растений; в органах млекопитающих животных обнаружено от 10 -3 до 10 -5 % Алюминия (на сырое вещество). Алюминий накапливается в печени, поджелудочной и щитовидной железах. В растительных продуктах содержание Алюминия колеблется от 4 мг на 1 кг сухого вещества (картофель) до 46 мг (желтая репа), в продуктах животного происхождения – от 4 мг (мед) до 72 мг на 1 кг сухого вещества (говядина). В суточном рационе человека содержание алюминия достигает 35–40 мг. Известны организмы – концентраторы алюминия, например, плауны (Lycopodiaceae), содержащие в золе до 5,3% алюминия, моллюски (Helix и Lithorina), в золе которых 0,2–0,8% алюминия. Образуя нерастворимые соединения с фосфатами, алюминий нарушает питание растений (поглощение фосфатов корнями) и животных (всасывание фосфатов в кишечнике).

Геохимия алюминия . Геохимические черты алюминия определяются его большим сродством к кислороду (в минералах алюминий входит в кислородные октаэдры и тетраэдры), постоянной валентностью (3), слабой растворимостью большинства природных соединений. В эндогенных процессах при застывании магмы и формировании изверженных пород алюминий входит в кристаллическую решетку полевых шпатов, слюд и других минералов – алюмосиликатов. В биосфере алюминий – слабый мигрант, его мало в организмах и гидросфере. Во влажном климате, где разлагающиеся остатки обильной растительности образуют много органических кислот, алюминий мигрирует в почвах и водах в виде органоминеральных коллоидных соединений; алюминий адсорбируется коллоидами и осаждается в нижней части почв. Связь алюминия с кремнием частично нарушается и местами в тропиках образуются минералы – гидрооксиды алюминия – бемит, диаспор, гидраргиллит. Большая же часть алюминия входит в состав алюмосиликатов – каолинита, бейделлита и других глинистых минералов. Слабая подвижность определяет остаточное накопление алюминия в коре выветривания влажных тропиков. В результате образуются элювиальные бокситы. В прошлые геологические эпохи бокситы накапливались также в озерах и прибрежной зоне морей тропических областей (например, осадочные бокситы Казахстана). В степях и пустынях, где живого вещества мало, а воды нейтральные и щелочные, алюминий почти не мигрирует. Наиболее энергична миграция алюминия в вулканических областях, где наблюдаются сильнокислые речные и подземные воды, богатые алюминием. В местах смещения кислых вод с щелочными – морскими (в устьях рек и других), алюминий осаждается с образованием бокситовых месторождений.

Применение Алюминия . Сочетание физических, механических и химических свойств Алюминия определяет его широкое применение практически во всех областях техники, особенно в виде его сплавов с других металлами. В электротехнике Алюминий успешно заменяет медь, особенно в производстве массивных проводников, например, в воздушных линиях, высоковольтных кабелях, шинах распределительных устройств, трансформаторах (электрическая проводимость Алюминия достигает 65,5% электрической проводимости меди, и он более чем в три раза легче меди; при поперечном сечении, обеспечивающем одну и ту же проводимость, масса проводов из Алюминий вдвое меньше медных). Сверхчистый Алюминий употребляют в производстве электрических конденсаторов и выпрямителей, действие которых основано на способности оксидной пленки Алюминия пропускать электрический ток только в одном направлении. Сверхчистый Алюминий, очищенный зонной плавкой, применяется для синтеза полупроводниковых соединений типа А III B V , применяемых для производства полупроводниковых приборов. Чистый Алюминий используют в производстве разного рода зеркальных отражателей. Алюминий высокой чистоты применяют для предохранения металлических поверхностей от действия атмосферной коррозии (плакирование, алюминиевая краска). Обладая относительно низким сечением поглощения нейтронов, Алюминий применяется как конструкционный материал в ядерных реакторах.

В алюминиевых резервуарах большой емкости хранят и транспортируют жидкие газы (метан, кислород, водород и т.д.), азотную и уксусную кислоты, чистую воду, перекись водорода и пищевые масла. Алюминий широко применяют в оборудовании и аппаратах пищевой промышленности, для упаковки пищевых продуктов (в виде фольги), для производства разного рода бытовых изделий. Резко возросло потребление Алюминий для отделки зданий, архитектурных, транспортных и спортивных сооружений.

В металлургии Алюминий (помимо сплавов на его основе) – одна из самых распространенных легирующих добавок в сплавах на основе Сu, Mg, Ti, Ni, Zn и Fe. Применяют Алюминий также для раскисления стали перед заливкой ее в форму, а также в процессах получения некоторых металлов методом алюминотермии. На основе Алюминия методом порошковой металлургии создан САП (спеченный алюминиевый порошок), обладающий при температурах выше 300 °С большой жаропрочностью.

Алюминий используют в производстве взрывчатых веществ (аммонал, алюмотол). Широко применяют различные соединения Алюминия.

Производство и потребление Алюминия непрерывно растет, значительно опережая по темпам роста производство стали, меди, свинца, цинка.

Список использованной литературы

1. В.А. Рабинович, З.Я. Хавин «Краткий химический справочник»

2. Л.С. Гузей «Лекции по общей химии»

3. Н.С. Ахметов «Общая и неорганическая химия»

4. Б.В. Некрасов «Учебник общей химии»

5. Н.Л. Глинка «Общая химия»

ОПРЕДЕЛЕНИЕ

Алюминий - тринадцатый элемент Периодической таблицы. Обозначение - Al от латинского «aluminium». Расположен в третьем периоде, IIIА группе. Относится к металлам. Заряд ядра равен 13.

Алюминий - самый распространенный в земной коре металл. Он входит в состав глин, полевых шпатов, слюд и многих других минералов. Общее содержание алюминия в земной коре составляет 8% (масс.).

Алюминий - серебристо-белый (рис. 1) легкий металл. Он легко вытягивается в проволоку и прокатывается в тонкие листы.

При комнатной температуре алюминий не изменяется на воздухе, но лишь потому, что его поверхность покрыта тонкой пленкой оксида, обладающего очень сильным защитным действием.

Рис. 1. Алюминий. Внешний вид.

Атомная и молекулярная масса алюминия

Относительной молекулярная масса вещества (M r) - это число, показывающее, во сколько раз масса данной молекулы больше 1/12 массы атома углерода, а относительная атомная масса элемента (A r) — во сколько раз средняя масса атомов химического элемента больше 1/12 массы атома углерода.

Поскольку в свободном состоянии алюминий существует в виде одноатомных молекул Al, значения его атомной и молекулярной масс совпадают. Они равны 26,9815.

Изотопы алюминия

Известно, что в природе алюминий может находиться в виде одного стабильного изотопа 27 Al. Массовое число равно 27. Ядро атома изотопа алюминия 27 Al содержит тринадцать протонов и четырнадцать нейтронов.

Существуют радиоактивные изотопы алюминия с массовыми числами от 21-го до 42-х, среди которых наиболее долгоживущим является изотоп 26 Al, период полураспада которого составляет 720 тысяч лет.

Ионы алюминия

На внешнем энергетическом уровне атома алюминия имеется три электрона, которые являются валентными:

1s 2 2s 2 2p 6 3s 2 3р 1 .

В результате химического взаимодействия алюминий отдает свои валентные электроны, т.е. является их донором, и превращается в положительно заряженный ион:

Al 0 -3e → Al 3+ .

Молекула и атом алюминия

В свободном состоянии алюминий существует в виде одноатомных молекул Al. Приведем некоторые свойства, характеризующие атом и молекулу алюминия:

Сплавы алюминия

Основное применение алюминия - производство сплавов на его основе. Легирующие добавки (например, медь, кремний, магний, цинк, марганец) вводят в алюминий главным образом для повышения его прочности.

Широкое применение имеют дуралюмины, содержащие медь и магний, силумины, в которых основной добавкой служит кремний, магналий (сплав алюминия с 9,5-11,5% магния).

Алюминий - одна из наиболее распространенных добавок в сплавах на основе меди, магния, титана, никеля, цинка и железа.

Примеры решения задач

ПРИМЕР 1

Задание Для сварки рельсов по методу алюмотермии используют смесь алюминия и оксида железа Fe 3 O 4 . Составьте термохимическое уравнение реакции, если при образовании железа массой 1 кг (1000 г) выделяется 6340 кДж тепла.
Решение Запишем уравнение реакции получения железа алюмотермическим методом:

8Al + 3Fe 2 O 3 = 9Fe+ 4Al 2 O 3 .

Найдем теоретическую массу железа (рассчитанная по термохимическому уравнению реакции):

n(Fe) = 9 моль;

m(Fe) = n(Fe) ×M(Fe);

m(Fe) = 9 × 56 = 504 г.

Пусть в ходе реакции выделится х кДж теплоты. Составим пропорцию:

1000 г - 6340 кДж;

504 г - х кДж.

Отсюда х будет равен:

х = 540 ×6340 / 1000 = 3195.

Значит в ходе реакции получения железа алюмотермическим методом выделяется 3195 кДж теплоты. Термохимическое уравнение реакции имеет вид:

8Al + 3Fe 2 O 3 = 9Fe+ 4Al 2 O 3 + 3195 кДж.

Ответ В ходе реакции выделяется 3195 кДж теплоты.

ПРИМЕР 2

Задание Алюминий обработали 200 г 16%-го раствора азотной кислоты, при этом выделился газ. Определите массу и объем выделившегося газа.
Решение Запишем уравнение реакции растворения алюминия в азотной кислоте:

2Al + 6HNO 3 = 2Al(NO 3) 3 + 3H 2 -.

Рассчитаем массу растворенного вещества азотной кислоты:

m(HNO 3) = m solution (HNO 3)×w(HNO 3) / 100%;

m(HNO 3) = 20 ×96% / 100% =19,2 г.

Найдем количество вещества азотной кислоты:

M(HNO 3) = Ar(H) + Ar(N) + 3×Ar(O) = 1 + 14 + 3×16 = 63 г/моль.

n(HNO 3) = m (HNO 3) / M(HNO 3);

n(HNO 3) = 19,2 / 63 = 0,3моль.

Согласно уравнению реакцииn(HNO 3) :n(H 2) = 6:3, т.е.

n(H 2) = 3×n(HNO 3) / 6 = ½ ×n(HNO 3) = ½ × 0,3 = 0,15 моль.

Тогда масса и объем выделившегося водорода будут равны:

M(H 2) = 2×Ar(H) = 2×1 = 2 г/моль.

m(H 2) = n(H 2) ×M(H 2) = 0,15×2 = 0,3г.

V(H 2) = n(H 2) ×V m ;

V(H 2) = 0,15× 22,4 = 3,36л.

Ответ В результате реакции выделяется водород массой 0,3 г и объемом 3,36 л.
 


Читайте:



Завершился вывод войск ссср из афганистана

Завершился вывод войск ссср из афганистана

В 1987 году в Афганистане начала осуществляться политика национального примирения, принятая и одобренная на Пленуме ЦК НДПА в декабре 1986 года....

Новое направление: инноватика Сложно ли учиться на инноватике

Новое направление: инноватика Сложно ли учиться на инноватике

Предоставляют массу возможностей для выбора профессионального направления. Многие из предметов и направлений обозначены достаточно непонятными...

К чему снится племянница

К чему снится племянница

Учеными было установлено, что чаще всего, людям снится о любимых родственниках сон. Племянник, привидевшийся во время ночного отдыха, может...

Репейник: толкование сновидения

Репейник: толкование сновидения

Сонник репейник толкует как символ стремления к особой защищенности от возможных неприятностей. Сон, в котором вы видели одиноко стоящий куст,...

feed-image RSS