Главная - Водоснабжение
Что является конечным продуктом фотосинтеза у растений. Процесс фотосинтеза в биологии. Где происходит фотосинтез

Фотосинтез - это процесс синтеза органических веществ из неорганических за счет энергии света. В подавляющем большинстве случаев фотосинтез осуществляют растения с помощью таких клеточных органелл как хлоропласты , содержащих зеленый пигмент хлорофилл .

Если бы растения не были способны к синтезу органики, то почти всем остальным организмам на Земле нечем было бы питаться, так как животные, грибы и многие бактерии не могут синтезировать органические вещества из неорганических. Они лишь поглощают готовые, расщепляют их на более простые, из которых снова собирают сложные, но уже характерные для своего тела.

Так обстоит дело, если говорить о фотосинтезе и его роли совсем кратко. Чтобы понять фотосинтез, нужно сказать больше: какие конкретно неорганические вещества используются, как происходит синтез?

Для фотосинтеза нужны два неорганических вещества - углекислый газ (CO 2) и вода (H 2 O). Первый поглощается из воздуха надземными частями растений в основном через устьица. Вода - из почвы, откуда доставляется в фотосинтезирующие клетки проводящей системой растений. Также для фотосинтеза нужна энергия фотонов (hν), но их нельзя отнести к веществу.

В общей сложности в результате фотосинтеза образуется органическое вещество и кислород (O 2). Обычно под органическим веществом чаще всего имеют в виду глюкозу (C 6 H 12 O 6).

Органические соединения большей частью состоят из атомов углерода, водорода и кислорода. Именно они содержатся в углекислом газе и воде. Однако при фотосинтезе происходит выделение кислорода. Его атомы берутся из воды.

Кратко и обобщенно уравнение реакции фотосинтеза принято записывать так:

6CO 2 + 6H 2 O → C 6 H 12 O 6 + 6O 2

Но это уравнение не отражает сути фотосинтеза, не делает его понятным. Посмотрите, хотя уравнение сбалансированно, в нем общее количество атомов в свободном кислороде 12. Но мы сказали, что они берутся из воды, а там их только 6.

На самом деле фотосинтез протекает в две фазы. Первая называется световой , вторая - темновой . Такие названия обусловлены тем, что свет нужен только для световой фазы , темновая фаза независима от его наличия, но это не значит, что она идет в темноте. Световая фаза протекает на мембранах тилакоидов хлоропласта , темновая - в строме хлоропласта.

В световую фазу связывания CO 2 не происходит. Происходит лишь улавливание солнечной энергии хлорофилльными комплексами, запасание ее в АТФ , использование энергии на восстановление НАДФ до НАДФ*H 2 . Поток энергии от возбужденного светом хлорофилла обеспечивается электронами, передающимися по электрон-транспортной цепи ферментов, встроенных в мембраны тилакоидов.

Водород для НАДФ берется из воды, которая под действием солнечного света разлагается на атомы кислорода, протоны водорода и электроны. Этот процесс называется фотолизом . Кислород из воды для фотосинтеза не нужен. Атомы кислорода из двух молекул воды соединяются с образованием молекулярного кислорода. Уравнение реакции световой фазы фотосинтеза кратко выглядит так:

H 2 O + (АДФ+Ф) + НАДФ → АТФ + НАДФ*H 2 + ½O 2

Таким образом, выделение кислорода происходит в световую фазу фотосинтеза. Количество молекул АТФ, синтезированных из АДФ и фосфорной кислоты, приходящихся на фотолиз одной молекулы воды, может быть различным: одна или две.

Итак, из световой фазы в темновую поступают АТФ и НАДФ*H 2 . Здесь энергия первого и восстановительная сила второго тратятся на связывание углекислого газа. Этот этап фотосинтеза невозможно объяснить просто и кратко, потому что он протекает не так, что шесть молекул CO 2 объединяются с водородом, высвобождаемым из молекул НАДФ*H 2 , и образуется глюкоза:

6CO 2 + 6НАДФ*H 2 →С 6 H 12 O 6 + 6НАДФ
(реакция идет с затратой энергии АТФ, которая распадается на АДФ и фосфорную кислоту).

Приведенная реакция – лишь упрощение для облегчения понимания. На самом деле молекулы углекислого газа связываются по одной, присоединяются к уже готовому пятиуглеродному органическому веществу. Образуется неустойчивое шестиуглеродное органическое вещество, которое распадается на трехуглеродные молекулы углевода. Часть этих молекул используется на ресинтез исходного пятиуглеродного вещества для связывания CO 2 . Такой ресинтез обеспечивается циклом Кальвина . Меньшая часть молекул углевода, включающего три атома углерода, выходит из цикла. Уже из них и других веществ синтезируются все остальные органические вещества (углеводы, жиры, белки).

То есть на самом деле из темновой фазы фотосинтеза выходят трехуглеродные сахара, а не глюкоза.

Пластиды бывают трех видов:

  • хлоропласты - зеленые, функция - фотосинтез
  • хромопласты - красные и желтые, являются полуразрушенными хлоропластами, могут придавать яркую окраску лепесткам и плодам.
  • лейкопласты - бесцветные, функция - запас веществ.

Строение хлоропластов

Покрыты двумя мембранами. Наружная мембрана гладкая, внутренняя имеет выросты внутрь - тилакоиды. Стопки коротких тилакоидов называются граны , они увеличивают площадь внутренней мембраны, чтобы расположить на ней как можно больше ферментов фотосинтеза.


Внутренняя среда хлоропласта называется строма. В ней находятся кольцевая ДНК и рибосомы, за счет них хлоропласты самостоятельно делают для себя часть белков, поэтому их называют полуавтономными органоидами. (Считается, что раньше и пластиды были свободными бактериями, которые были поглощены крупной клеткой, но не переварены.)

Фотосинтез (простой)

В зеленых листьях на свету
В хлоропластах с помощью хлорофилла
Из углекислого газа и воды
Синтезируется глюкоза и кислород.

Фотосинтез (средняя сложность)

1. Световая фаза.
Происходит на свету в гранах хлоропластов. Под действием света происходит разложение (фотолиз) воды, получается кислород, который выбрасывается, а так же атомы водорода (НАДФ-Н) и энергия АТФ, которые используются в следующей стадии.


2. Темновая фаза.
Происходит как на свету, так и в темноте (свет не нужен), в строме хлоропластов. Из углекислого газа, полученного из окружающей среды и атомов водорода, полученных в предыдущей стадии, за счет энергии АТФ, полученной в предыдущей стадии, синтезируется глюкоза.

1. Установите соответствие между процессом фотосинтеза и фазой, в которой он происходит: 1) световая, 2) темновая. Запишите цифры 1 и 2 в правильном порядке.
А) образование молекул НАДФ-2Н
Б) выделение кислорода
В) синтез моносахарида
Г) синтез молекул АТФ
Д) присоединение углекислого газа к углеводу

Ответ


2. Установите соответствие между характеристикой и фазой фотосинтеза: 1) световая, 2) темновая. Запишите цифры 1 и 2 в правильном порядке.
А) фотолиз воды
Б) фиксация углекислого газа
В) расщепление молекул АТФ
Г) возбуждение хлорофилла квантами света
Д) синтез глюкозы

Ответ


3. Установите соответствие между процессом фотосинтеза и фазой, в которой он происходит: 1) световая, 2) темновая. Запишите цифры 1 и 2 в правильной последовательности.
А) образование молекул НАДФ*2Н
Б) выделение кислорода
В) синтез глюкозы
Г) синтез молекул АТФ
Д) восстановление углекислого газа

Ответ


4. Установите соответствие между процессами и фазой фотосинтеза: 1) световая, 2) темновая. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) полимеризация глюкозы
Б) связывание углекислого газа
В) синтез АТФ
Г) фотолиз воды
Д) образование атомов водорода
Е) синтез глюкозы

Ответ


5. Установите соответствие между фазами фотосинтеза и их характеристиками: 1) световая, 2) темновая. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) осуществляется фотолиз воды
Б) образуется АТФ
В) кислород выделяется в атмосферу
Г) протекает с затратами энергии АТФ
Д) реакции могут протекать как на свету, так и в темноте

Ответ

6сб. Установите соответствие между фазами фотосинтеза и их характеристиками: 1) световая, 2) темновая. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) восстановление НАДФ+
Б) транспорт ионов водорода через мембрану
В) протекает в гранах хлоропластов
Г) синтезируются молекулы углеводов
Д) электроны хлорофилла перемещаются на более высокий энергетический уровень
Е) расходуется энергия АТФ

Ответ

ФОРМИРУЕМ 7:
А) перемещение возбужденных электронов
Б) преобразование НАДФ-2Р в НАДФ+
В) окисление НАДФ·Н
Г) образуется молекулярный кислород
Д) процессы происходят в строме хлоропласта


Проанализируйте таблицу. Заполните пустые ячейки таблицы, используя понятия и термины, приведенные в списке. Для каждой ячейки, обозначенной буквами, выберите соответствующий термин из предложенного списка.
1) мембраны тилакоидов
2) световая фаза
3) фиксация неорганического углерода
4) фотосинтез воды
5) темновая фаза
6) цитоплазма клетки

Ответ



Проанализируйте таблицу «Реакции фотосинтеза». Для каждой буквы выберите соответствующий термин из предложенного списка.
1) окислительное фосфорилирование
2) окисление НАДФ-2Н
3) мембраны тилакоидов
4) гликолиз
5) присоединение углекислого газа к пентозе
6) образование кислорода
7) образование рибулозодифосфата и глюкозы
8) синтез 38 АТФ

Ответ


Выберите три варианта. Темновая фаза фотосинтеза характеризуется
1) протеканием процессов на внутренних мембранах хлоропластов
2) синтезом глюкозы
3) фиксацией углекислого газа
4) протеканием процессов в строме хлоропластов
5) наличием фотолиза воды
6) образованием АТФ

Ответ



1. Перечисленные ниже признаки, кроме двух, используются для описания строения и функций изображенного органоида клетки. Определите два признака, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.

2) накапливает молекулы АТФ
3) обеспечивает фотосинтез

5) обладает полуавтономностью

Ответ



2. Все перечисленные ниже признаки, кроме двух, можно использовать для описания изображённого на рисунке органоида клетки. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) одномембранный органоид
2) состоит из крист и хроматина
3) содержит кольцевую ДНК
4) синтезирует собственный белок
5) способен к делению

Ответ


Все приведенные ниже признаки, кроме двух, можно использовать для описания строения и функций хлоропласта. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) является двумембранным органоидом
2) имеет собственную замкнутую молекулу ДНК
3) является полуавтономным органоидом
4) формирует веретено деления
5) заполнен клеточным соком с сахарозой

Ответ


Выберите один, наиболее правильный вариант. Клеточный органоид, содержащий молекулу ДНК
1) рибосома
2) хлоропласт
3) клеточный центр
4) комплекс Гольджи

Ответ


Выберите один, наиболее правильный вариант. В синтезе какого вещества участвуют атомы водорода в темновой фазе фотосинтеза?
1) НАДФ-2Н
2) глюкозы
3) АТФ
4) воды

Ответ


Все приведенные ниже признаки, кроме двух, можно использовать для определения процессов световой фазы фотосинтеза. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) фотолиз воды


4) образование молекулярного кислорода

Ответ


Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. В световую фазу фотосинтеза в клетке
1) образуется кислород в результате разложения молекул воды
2) происходит синтез углеводов из углекислого газа и воды
3) происходит полимеризация молекул глюкозы с образованием крахмала
4) осуществляется синтез молекул АТФ
5) энергия молекул АТФ расходуется на синтез углеводов

Ответ


Выберите один, наиболее правильный вариант. Какой клеточный органоид содержит ДНК
1) вакуоль
2) рибосома
3) хлоропласт
4) лизосома

Ответ


Вставьте в текст «Синтез органических веществ в растении» пропущенные термины из предложенного перечня, используя для этого цифровые обозначения. Запишите выбранные цифры в порядке, соответствующем буквам. Энергию, необходимую для своего существования, растения запасают в виде органических веществ. Эти вещества синтезируются в ходе __________ (А). Этот процесс протекает в клетках листа в __________ (Б) – особых пластидах зелёного цвета. Они содержат особое вещество зелёного цвета – __________ (В). Обязательным условием образования органических веществ помимо воды и углекислого газа является __________ (Г).
Список терминов:
1) дыхание
2) испарение
3) лейкопласт
4) питание
5) свет
6) фотосинтез
7) хлоропласт
8) хлорофилл

Ответ


Выберите один, наиболее правильный вариант. В клетках первичный синтез глюкозы происходит в
1) митохондриях
2) эндоплазматической сети
3) комплексе Гольджи
4) хлоропластах

Ответ


Выберите один, наиболее правильный вариант. Молекулы кислорода в процессе фотосинтеза образуются за счет разложения молекул
1) углекислого газа
2) глюкозы
3) АТФ
4) воды

Ответ


Выберите один, наиболее правильный вариант. Верны ли следующие суждения о фотосинтезе? А) В световой фазе происходит преобразование энергии света в энергию химических связей глюкозы. Б) Реакции темновой фазы протекают на мембранах тилакоидов, в которые поступают молекулы углекислого газа.
1) верно только А
2) верно только Б
3) верны оба суждения
4) оба суждения неверны

Ответ


1. Установите правильную последовательность процессов, протекающих при фотосинтезе. Запишите в таблицу цифры, под которыми они указаны.
1) Использование углекислого газа
2) Образование кислорода
3) Синтез углеводов
4) Синтез молекул АТФ
5) Возбуждение хлорофилла

Ответ


2. Установите правильную последовательность процессов фотосинтеза.
1) преобразование солнечной энергии в энергию АТФ
2) образование возбуждённых электронов хлорофилла
3) фиксация углекислого газа
4) образование крахмала
5) преобразование энергии АТФ в энергию глюкозы

Ответ


3. Установите последовательность процессов, протекающих при фотосинтезе. Запишите соответствующую последовательность цифр.

2) расщепление АТФ и выделение энергии
3) синтез глюкозы
4) синтез молекул АТФ
5) возбуждение хлорофилла

Ответ


Выберите три особенности строения и функций хлоропластов
1) внутренние мембраны образуют кристы
2) многие реакции протекают в гранах
3) в них происходит синтез глюкозы
4) являются местом синтеза липидов
5) состоят из двух разных частиц
6) двумембранные органоиды

Ответ


Определите три верных утверждения из общего списка, и запишите в таблицу цифры, под которыми они указаны. В световую фазу фотосинтеза происходит
1) фотолиз воды
2) восстановление углекислого газа до глюкозы
3) синтез молекул АТФ за счет энергии солнечного света
4) соединение водорода с переносчиком НАДФ+
5) использование энергии молекул АТФ на синтез углеводов

Ответ


Все перечисленные ниже признаки, кроме двух, можно использовать для описания световой фазы фотосинтеза. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) образуется побочный продукт – кислород
2) происходит в строме хлоропласта
3) связывание углекислого газа
4) синтез АТФ
5) фотолиз воды

Ответ


Выберите один, наиболее правильный вариант. Процесс фотосинтеза следует рассматривать как одно из важных звеньев круговорота углерода в биосфере, так как в ходе его
1) растения вовлекают углерод из неживой природы в живую
2) растения выделяют в атмосферу кислород
3) организмы выделяют углекислый газ в процессе дыхания
4) промышленные производства пополняют атмосферу углекислым газом

Ответ


Установите соответствие между этапами процесса и процессами: 1) фотосинтез, 2) биосинтез белка. Запишите цифры 1 и 2 в правильном порядке.
А) выделение свободного кислорода
Б) образование пептидных связей между аминокислотами
В) синтез иРНК на ДНК
Г) процесс трансляции
Д) восстановление углеводов
Е) преобразование НАДФ+ в НАДФ 2Н

Ответ


Выберите органоиды клетки и их структуры, участвующие в процессе фотосинтеза.
1) лизосомы
2) хлоропласты
3) тилакоиды
4) граны
5) вакуоли
6) рибосомы

Ответ


Перечисленные ниже термины, кроме двух, используются для описания пластид. Определите два термина, «выпадающих» из общего списка, и запишите в таблицу цифры, под которыми они указаны.
1) пигмент
2) гликокаликс
3) грана
4) криста
5) тилакоид

Ответ







Ответ


Все приведённые ниже признаки, кроме двух, можно использовать для описания процесса фотосинтеза. Определите два признака, «выпадающих» из общего списка, и запишите в ответ цифры, под которыми они указаны.
1) Для протекания процесса используется энергия света.
2) Процесс происходит при наличии ферментов.
3) Центральная роль в процессе принадлежит молекуле хлорофилла.
4) Процесс сопровождается расщеплением молекулы глюкозы.
5) Процесс не может происходить в клетках прокариот.

Ответ


1. Перечисленные ниже понятия, кроме двух, используются для описания темновой фазы фотосинтеза. Определите два понятия, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) фиксация углекислого газа
2) фотолиз
3) окисление НАДФ·2Н
4) грана
5) строма

Ответ


2. Все перечисленные ниже признаки, кроме двух, используют для описания темновой фазы фотосинтеза. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) образование кислорода
2) фиксация углекислого газа
3) использование энергии АТФ
4) синтез глюкозы
5) возбуждение хлорофилла

Ответ



Перечисленные ниже признаки, кроме двух, используются для описания строения и функций изображенного органоида клетки. Определите два признака, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
1) расщепляет биополимеры на мономеры
2) накапливает молекулы АТФ
3) обеспечивает фотосинтез
4) относится к двумембранным органоидам
5) обладает полуавтономностью

Ответ


Установите соответствие между процессами и их локализацией в хлоропластах: 1) строма, 2) тилакоид. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) использование АТФ
Б) фотолиз воды
В) возбуждение хлорофилла
Г) образование пентозы
Д) перенос электронов по цепи ферментов

Ответ

© Д.В.Поздняков, 2009-2019

1. Фотосинтез относится к процессам пластического или энергетического обмена? Почему?

Фотосинтез относится к процессам пластического обмена т.к. сопровождается:

● синтезом сложных органических соединений из более простых веществ, а именно: из неорганических веществ (Н 2 О и СО 2) синтезируется глюкоза (С 6 Н 12 О 6);

● поглощением световой энергии.

2. В каких органоидах растительной клетки происходит фотосинтез? Что представляет собой фотосистема? Какую функцию выполняют фотосистемы?

Фотосинтез происходит в зелёных пластидах – хлоропластах.

Фотосистемы – особые пигмент-белковые комплексы, расположенные в мембранах тилакоидов хлоропластов. Существует два типа фотосистем – фотосистема I и фотосистема II. В состав каждой из них входит светособирающая антенна, образованная молекулами пигментов, реакционный центр и переносчики электронов.

Светособирающая антенна функционирует наподобие воронки: молекулы пигментов поглощают свет и передают всю собранную энергию в реакционный центр, где находится молекула-ловушка, представленная хлорофиллом а. Поглотив энергию, молекула-ловушка переходит в возбуждённое состояние и отдаёт один из своих электронов специальному переносчику, т.е. окисляется. Таким образом, фотосистемы выполняют функцию поглощения света и преобразования световой энергии в химическую.

3. Каково значение фотосинтеза на Земле? Почему без фототрофных организмов существование биосферы было бы невозможным?

Фотосинтез – единственный процесс на планете, в ходе которого происходит преобразование световой энергии Солнца в энергию химических связей синтезируемых органических веществ. При этом исходными соединениями для синтеза органических веществ служат бедные энергией неорганические вещества – углекислый газ и вода.

Образованные в ходе фотосинтеза органические соединения передаются в составе пищи от фототрофных организмов к растительноядным, затем – к хищным, являясь источником энергии и строительным материалом для синтеза других веществ, для образования новых клеток и структур. Следовательно, благодаря деятельности фототрофов удовлетворяются пищевые потребности гетеротрофных организмов.

Кроме того, фотосинтез является источником молекулярного кислорода, необходимого для дыхания большинства живых организмов. Из кислорода сформировался и поддерживается озоновый слой, защищающий живые организмы планеты от губительного воздействия коротковолнового ультрафиолетового излучения. Благодаря фотосинтезу поддерживается относительно постоянное содержание СО 2 в атмосфере.

4. Охарактеризуйте световую и темновую фазы фотосинтеза по плану:

1) место протекания; 2) исходные вещества; 3) происходящие процессы; 4) конечные продукты.

Какие продукты световой фазы фотосинтеза используются в темновой фазе?

Световая фаза фотосинтеза.

1) Место протекания: мембраны тилакоидов.

2) Исходные вещества: Н 2 О, окисленный НАДФ (НАДФ +), АДФ, Н 3 РО 4 . Для протекания световой фазы также необходимы фотосинтетические пигменты (хлорофиллы и др.), однако их нельзя назвать исходными веществами световой фазы.

3) Происходящие процессы: поглощение света фотосистемами, фотолиз воды, транспорт электронов на внешнюю сторону тилакоида и накопление протонов внутри тилакоида (т.е. возникновение электрохимического потенциала на мембране тилакоида), синтез АТФ, восстановление НАДФ + .

4) Конечные продукты: АТФ, восстановленный НАДФ (НАДФ Н+Н +), побочный продукт – молекулярный кислород (О 2).

Темновая фаза фотосинтеза.

1) Место протекания: строма хлоропласта.

2) Исходные вещества: СО 2 , АТФ, восстановленный НАДФ (НАДФ Н+Н +).

3) Происходящие процессы: синтез глюкозы (восстановление СО 2 до органических веществ), в ходе которого происходит гидролиз АТФ и окисление НАДФ Н+Н + .

4) Конечные продукты: глюкоза (С 6 Н 12 О 6), окисленный НАДФ (НАДФ +), АДФ, Н 3 РО 4 .

В темновой фазе фотосинтеза используются такие продукты световой фазы как НАДФ Н+Н + (служит источником атомов водорода для синтеза глюкозы) и АТФ (служит источником энергии для синтеза глюкозы).

5. Сравните фотосинтез и аэробное дыхание. Укажите черты сходства и различия.

Сходство:

● Сложные многостадийные процессы, протекающие с участием ферментов.

● Фотосинтез и заключительный (кислородный) этап аэробного дыхания протекают в двумембранных органоидах (хлоропластах и митохондриях соответственно).

● Окислительно-восстановительные процессы, которые сопровождаются переносом электронов по электрон-транспортным цепям внутренних мембран соответствующих органоидов, возникновением разности потенциалов на этих мембранах, работой АТФ-синтетазы и синтезом АТФ.

Различия:

● Процесс фотосинтеза относится к пластическому обмену т.к. сопровождается синтезом органических веществ из неорганических и происходит с поглощением световой энергии. Процесс аэробного дыхания относится к энергетическому обмену, поскольку происходит расщепление сложных органических веществ и высвобождение заключённой в них энергии.

● Фотосинтез протекает только в клетках фототрофных организмов, а аэробное дыхание – в клетках большинства живых организмов (в том числе и фототрофов).

● Различные исходные вещества и конечные продукты. Если рассматривать суммарные уравнения фотосинтеза и аэробного дыхания, то можно заметить, что продукты фотосинтеза фактически являются исходными веществами для аэробного дыхания и наоборот.

● Переносчиками атомов водорода в процессе дыхания служат НАД и ФАД, в фотосинтезе – НАДФ.

И (или) другие существенные признаки.

6. Человек за сутки потребляет примерно 430 г кислорода. Дерево средней величины поглощает около 30 кг углекислого газа в год. Сколько деревьев необходимо, чтобы обеспечить одного человека кислородом?

● За год человек потребляет: 430 г × 365 = 156 950 г кислорода.

● Рассчитаем химическое количество углекислого газа, поглощаемого за год одним деревом:

М (СО 2) = 12 + 16 × 2 = 44 г/моль. n (СО 2) = m: М = 30 000 г: 44 г/моль ≈ 681,8 моль.

● Суммарное уравнение фотосинтеза:

6СО 2 + 6Н 2 О → С 6 Н 12 О 6 + 6О 2

Поглощение 6 моль углекислого газа сопровождается выделением 6 моль кислорода. Значит, поглощая за год 681,8 моль углекислого газа, дерево выделяет 681,8 моль кислорода.

● Найдём массу кислорода, выделяемого деревом за год:

М (О 2) = 16 × 2 = 32 г/моль. m (О 2) = n × M = 681,8 моль × 32 г/моль = 21 817,6 г

● Определим, сколько деревьев необходимо, чтобы обеспечить одного человека кислородом. Количество деревьев = 156 950 г: 21 817,6 ≈ 7,2 дерева.

Ответ: для того, чтобы обеспечить одного человека кислородом, в среднем понадобится 7,2 дерева (допустимыми ответами будут "8 деревьев" или "7 деревьев").

7. Исследователи разделили растения пшеницы на две группы и выращивали их в лаборатории в одинаковых условиях, за исключением того, что растения первой группы освещали красным светом, а растения второй группы - зелёным. У растений какой группы фотосинтез протекал более интенсивно? С чем это связано?

Фотосинтез протекал более интенсивно у растений, освещаемых красным светом. Это связано с тем, что основные фотосинтетические пигменты – хлорофиллы – интенсивно поглощают красный свет (а также сине-фиолетовую часть спектра), а зелёный отражают, что и обусловливает зелёную окраску этих пигментов.

8*. С помощью какого эксперимента можно доказать, что кислород, выделяющийся при фотосинтезе, образуется именно из молекул воды, а не из молекул углекислого газа или какого-либо другого вещества?

Если для осуществления фотосинтеза использовать воду, меченную радиоактивным кислородом (молекулы вместо стабильного нуклида 16 О содержат радионуклид кислорода), то радиоактивную метку можно будет обнаружить в выделяющемся молекулярном кислороде. Если же использовать для фотосинтеза любое другое вещество, содержащее радионуклид кислорода, то выделяющийся О 2 не будет содержать радиоактивную метку. В частности, радиоактивный кислород, содержащийся в молекулах поглощаемого углекислого газа, будет обнаруживаться в составе синтезированных органических веществ, но не в составе О 2 .

* Задания, отмеченные звёздочкой, предполагают выдвижение учащимися различных гипотез. Поэтому при выставлении отметки учителю следует ориентироваться не только на ответ, приведённый здесь, а принимать во внимание каждую гипотезу, оценивая биологическое мышление учащихся, логику их рассуждений, оригинальность идей и т. д. После этого целесообразно ознакомить учащихся с приведённым ответом.

Воду и минеральные вещества растения получают с помощью корней. Листья обеспечивают органическое питание растений. В отличие от корней они находятся не в почве, а в воздушной среде, поэтому осуществляют не почвенное, а воздушное питание.

Из истории изучения воздушного питания растений

Знания о питании растений накапливались постепенно. Около 350 лет назад голландский ученый Ян Гельмонт впервые поставил опыт по изучению питания растений. В глиняном горшке с почвой он выращивал иву, добавляя туда только воду. Опадавшие листья ученый тщательно взвешивал. Через пять лет масса ивы вместе с опавшими листьями увеличилась на 74,5 кг, а масса почвы уменьшилась всего на 57 г. На основании этого Гельмонт пришел к выводу, что все вещества в растении образуются не из почвы, а из воды. Мнение о том, что растение увеличивается в размерах только за счет воды, сохранялось до конца XVIII века.

В 1771 г. английский химик Джозеф Пристли изучал углекислый газ, или, как он его называл, «испорченный воздух» и сделал замечательное открытие. Если зажечь свечу и накрыть оо стеклянным колпаком, то, немного погорев, она погаснет. Мышь под таким колпаком начинает задыхаться. Однако если под колпак вместе с мышью поместить ветку мяты, то мышь не задыхается и продолжает жить. Значит, растения «исправляют» воздух, испорченный дыханием животных, то есть превращают углекислый газ в кислород.

В 1862 г. немецкий ботаник Юлиус Сакс с помощью опытов доказал, что зеленые растения не только выделяют кислород, но и создают органические вещества, служащие пищей всем другим организмам.

Фотосинтез

Главное отличие зеленых растений от других живых организмов - наличие в их клетках хлоропластов, содержащих хлорофилл. Хлорофилл обладает свойством улавливать солнечные лучи, энергия которых необходима для создания органических вещсств. Процесс образования органического вещества из углекислого газа и воды с помощью солнечной энергии называется фотосинтезом (греч. рЬо1оз свет). В процессе фотосинтеза образуются не только органические вещества - сахара, но и выделяется кислород.

Схематически процесс фотосинтеза можно изобразить так:

Вода поглощается корнями и по проводящей системе корней и стебля передвигается к листьям. Углекислый газ - составная часть воздуха. Он поступает в листья через открытые устьица. Поглощению углекислого газа способствует строение листа: плоская поверхность листовых пластинок, увеличивающая площадь соприкосновения с воздухом, и наличие большого числа устьиц в кожице.

Образующиеся в результате фотосинтеза сахара превращаются в крахмал. Крахмал это органическое вещество, которое не растворяется в воде. Кго легко обнаружить с помощью раствора йода.

Доказательства образования крахмала в листьях на свету

Докажем, что в зеленых листьях растений из углекислого газа и воды образуется крахмал. Для этого рассмотрим опыт, который в свое время был поставлен Юлиусом Саксом.

Комнатное растение (герань или примулу) выдерживают двое суток в темноте, чтобы весь крахмал израсходовался на процессы жизнедеятельности. Затем несколько листьев закрывают с двух сторон черной бумагой так, чтобы была прикрыта только их часть. Днем растение выставляют на свет, а ночью его дополнительно освещают с помощью настольной лампы.

Через сутки исследуемые листья срезают. Чтобы выяснить, в какой части листа образовался крахмал, листья кипятят в воле (чтобы набухли крахмальные зерна), а затем выдерживают в горячем спирте (хлорофилл при этом растворяется, и лист обесцвечивается). Затем листья промывают в воде и действуют на них слабым раствором йода. Тс участки листьев, которые были на свету, приобретают от действия йода синюю окраску. Это означает, что крахмал образовался в клетках освещенной части листа. Следовательно, фотосинтез происходит только на свету.

Доказательства необходимости углекислого газа для фотосинтеза

Чтобы доказать, что для образования крахмала в листьях необходим углекислый газ, комнатное растение также предварительно выдерживают в темноте. Затем один из листьев помещают в колбу с небольшим количеством известковой воды. Колбу закрывают ватным тампоном. Растение выставляют на свет. Углекислый газ поглощается известковой водой, поэтому его в колбе не будет. Лист срезается, и так же, как в предыдущем опыте, исследуется на наличие крахмала. Он выдерживается в горячей воде и спирте, обрабатывается раствором йода. Однако в этом случае результат опыта будет иным: лист не окрашивается в синий цвет, т.к. крахмал в нем не содержится. Следовательно, для образования крахмала, кроме света и воды, необходим углекислый газ.

Таким образом, мы ответили на вопрос, какую пищу получает растение из воздуха. Опыт показал, что это углекислый газ. Он необходим для образования органического вещества.

Организмы, самостоятельно создающие органические вещества для построения своего тела, называются автотрофамн (греч. autos - сам, trofe - пища).

Доказательства образования кислорода в процессе фотосинтеза

Чтобы доказать, что при фотосинтезе растения во внешнюю среду выделяют кислород, рассмотрим опыт с водным растением элодеей. Побеги элодеи опускают в сосуд с водой и сверху накрывают воронкой. На конец воронки надевают пробирку с водой. Растение выставляют на свет на двое-трое суток. На свету элодея выделяет пузырьки газа. Они скапливаются в верхней части пробирки, вытесняя воду. Для того чтобы выяснить, какой это газ, пробирку аккуратно снимают и вносят в нее тлеющую лучинку. Лучинка ярко вспыхивает. Это значит, что в колбе накопился газ, поддерживающий горение кислород.

Космическая роль растений

Растения, содержащие хлорофилл, способны усваивать солнечную энергию. Поэтому К.А. Тимирязев назвал их роль на Земле космической. Часть энергии Солнца, запасенная в органическом веществе, может долго сохраняться. Каменный уголь, торф, нефть образованы веществами, которые в далекие геологические времена были созданы зелеными растениями и вобрали в себя энергию Солнца. Сжигая природные горючие материалы, человек освобождает энергию, запасенную миллионы лет назад зелеными растениями.

— синтез органических веществ из углекислого газа и воды с обязательным использованием энергии света:

6СО 2 + 6Н 2 О + Q света → С 6 Н 12 О 6 + 6О 2 .

У высших растений органом фотосинтеза является лист, органоидами фотосинтеза — хлоропласты (строение хлоропластов — лекция №7). В мембраны тилакоидов хлоропластов встроены фотосинтетические пигменты: хлорофиллы и каротиноиды. Существует несколько разных типов хлорофилла (a, b, c, d ), главным является хлорофилл a . В молекуле хлорофилла можно выделить порфириновую «головку» с атомом магния в центре и фитольный «хвост». Порфириновая «головка» представляет собой плоскую структуру, является гидрофильной и поэтому лежит на той поверхности мембраны, которая обращена к водной среде стромы. Фитольный «хвост» — гидрофобный и за счет этого удерживает молекулу хлорофилла в мембране.

Хлорофиллы поглощают красный и сине-фиолетовый свет, отражают зеленый и поэтому придают растениям характерную зеленую окраску. Молекулы хлорофилла в мембранах тилакоидов организованы в фотосистемы . У растений и синезеленых водорослей имеются фотосистема-1 и фотосистема-2, у фотосинтезирующих бактерий — фотосистема-1. Только фотосистема-2 может разлагать воду с выделением кислорода и отбирать электроны у водорода воды.

Фотосинтез — сложный многоступенчатый процесс; реакции фотосинтеза подразделяют на две группы: реакции световой фазы и реакции темновой фазы .

Световая фаза

Эта фаза происходит только в присутствии света в мембранах тилакоидов при участии хлорофилла, белков-переносчиков электронов и фермента — АТФ-синтетазы. Под действием кванта света электроны хлорофилла возбуждаются, покидают молекулу и попадают на внешнюю сторону мембраны тилакоида, которая в итоге заряжается отрицательно. Окисленные молекулы хлорофилла восстанавливаются, отбирая электроны у воды, находящейся во внутритилакоидном пространстве. Это приводит к распаду или фотолизу воды:

Н 2 О + Q света → Н + + ОН — .

Ионы гидроксила отдают свои электроны, превращаясь в реакционноспособные радикалы.ОН:

ОН — → .ОН + е — .

Радикалы.ОН объединяются, образуя воду и свободный кислород:

4НО. → 2Н 2 О + О 2 .

Кислород при этом удаляется во внешнюю среду, а протоны накапливаются внутри тилакоида в «протонном резервуаре». В результате мембрана тилакоида с одной стороны за счет Н + заряжается положительно, с другой за счет электронов — отрицательно. Когда разность потенциалов между наружной и внутренней сторонами мембраны тилакоида достигает 200 мВ, протоны проталкиваются через каналы АТФ-синтетазы и происходит фосфорилирование АДФ до АТФ; атомарный водород идет на восстановление специфического переносчика НАДФ + (никотинамидадениндинуклеотидфосфат) до НАДФ·Н 2:

2Н + + 2е — + НАДФ → НАДФ·Н 2 .

Таким образом, в световую фазу происходит фотолиз воды, который сопровождается тремя важнейшими процессами: 1) синтезом АТФ; 2) образованием НАДФ·Н 2 ; 3) образованием кислорода. Кислород диффундирует в атмосферу, АТФ и НАДФ·Н 2 транспортируются в строму хлоропласта и участвуют в процессах темновой фазы.

1 — строма хлоропласта; 2 — тилакоид граны.

Темновая фаза

Эта фаза протекает в строме хлоропласта. Для ее реакций не нужна энергия света, поэтому они происходят не только на свету, но и в темноте. Реакции темновой фазы представляют собой цепочку последовательных преобразований углекислого газа (поступает из воздуха), приводящую к образованию глюкозы и других органических веществ.

Первая реакция в этой цепочке — фиксация углекислого газа; акцептором углекислого газа является пятиуглеродный сахар рибулозобифосфат (РиБФ); катализирует реакцию фермент рибулозобифосфат-карбоксилаза (РиБФ-карбоксилаза). В результате карбоксилирования рибулозобисфосфата образуется неустойчивое шестиуглеродное соединение, которое сразу же распадается на две молекулы фосфоглицериновой кислоты (ФГК). Затем происходит цикл реакций, в которых через ряд промежуточных продуктов фосфоглицериновая кислота преобразуется в глюкозу. В этих реакциях используются энергии АТФ и НАДФ·Н 2 , образованных в световую фазу; цикл этих реакций получил название «цикл Кальвина»:

6СО 2 + 24Н + + АТФ → С 6 Н 12 О 6 + 6Н 2 О.

Кроме глюкозы, в процессе фотосинтеза образуются другие мономеры сложных органических соединений — аминокислоты, глицерин и жирные кислоты, нуклеотиды. В настоящее время различают два типа фотосинтеза: С 3 - и С 4 -фотосинтез.

С 3 -фотосинтез

Это тип фотосинтеза, при котором первым продуктом являются трехуглеродные (С 3) соединения. С 3 -фотосинтез был открыт раньше С 4 -фотосинтеза (М. Кальвин). Именно С 3 -фотосинтез описан выше, в рубрике «Темновая фаза». Характерные особенности С 3 -фотосинтеза: 1) акцептором углекислого газа является РиБФ, 2) реакцию карбоксилирования РиБФ катализирует РиБФ-карбоксилаза, 3) в результате карбоксилирования РиБФ образуется шестиуглеродное соединение, которое распадается на две ФГК. ФГК восстанавливается до триозофосфатов (ТФ). Часть ТФ идет на регенерацию РиБФ, часть превращается в глюкозу.

1 — хлоропласт; 2 — пероксисома; 3 — митохондрия.

Это светозависимое поглощение кислорода и выделение углекислого газа. Еще в начале прошлого века было установлено, что кислород подавляет фотосинтез. Как оказалось, для РиБФ-карбоксилазы субстратом может быть не только углекислый газ, но и кислород:

О 2 + РиБФ → фосфогликолат (2С) + ФГК (3С).

Фермент при этом называется РиБФ-оксигеназой. Кислород является конкурентным ингибитором фиксации углекислого газа. Фосфатная группа отщепляется, и фосфогликолат становится гликолатом, который растение должно утилизировать. Он поступает в пероксисомы, где окисляется до глицина. Глицин поступает в митохондрии, где окисляется до серина, при этом происходит потеря уже фиксированного углерода в виде СО 2 . В итоге две молекулы гликолата (2С + 2С) превращаются в одну ФГК (3С) и СО 2 . Фотодыхание приводит к понижению урожайности С 3 -растений на 30-40% (С 3 -растения — растения, для которых характерен С 3 -фотосинтез).

С 4 -фотосинтез — фотосинтез, при котором первым продуктом являются четырехуглеродные (С 4) соединения. В 1965 году было установлено, что у некоторых растений (сахарный тростник, кукуруза, сорго, просо) первыми продуктами фотосинтеза являются четырехуглеродные кислоты. Такие растения назвали С 4 -растениями . В 1966 году австралийские ученые Хэтч и Слэк показали, что у С 4 -растений практически отсутствует фотодыхание и они гораздо эффективнее поглощают углекислый газ. Путь превращений углерода в С 4 -растениях стали называть путем Хэтча-Слэка .

Для С 4 -растений характерно особое анатомическое строение листа. Все проводящие пучки окружены двойным слоем клеток: наружный — клетки мезофилла, внутренний — клетки обкладки. Углекислый газ фиксируется в цитоплазме клеток мезофилла, акцептор — фосфоенолпируват (ФЕП, 3С), в результате карбоксилирования ФЕП образуется оксалоацетат (4С). Процесс катализируется ФЕП-карбоксилазой . В отличие от РиБФ-карбоксилазы ФЕП-карбоксилаза обладает большим сродством к СО 2 и, самое главное, не взаимодействует с О 2 . В хлоропластах мезофилла много гран, где активно идут реакции световой фазы. В хлоропластах клеток обкладки идут реакции темновой фазы.

Оксалоацетат (4С) превращается в малат, который через плазмодесмы транспортируется в клетки обкладки. Здесь он декарбоксилируется и дегидрируется с образованием пирувата, СО 2 и НАДФ·Н 2 .

Пируват возвращается в клетки мезофилла и регенерирует за счет энергии АТФ в ФЕП. СО 2 вновь фиксируется РиБФ-карбоксилазой с образованием ФГК. Регенерация ФЕП требует энергии АТФ, поэтому нужно почти вдвое больше энергии, чем при С 3 -фотосинтезе.

Значение фотосинтеза

Благодаря фотосинтезу, ежегодно из атмосферы поглощаются миллиарды тонн углекислого газа, выделяются миллиарды тонн кислорода; фотосинтез является основным источником образования органических веществ. Из кислорода образуется озоновый слой, защищающий живые организмы от коротковолновой ультрафиолетовой радиации.

При фотосинтезе зеленый лист использует лишь около 1% падающей на него солнечной энергии, продуктивность составляет около 1 г органического вещества на 1 м 2 поверхности в час.

Хемосинтез

Синтез органических соединений из углекислого газа и воды, осуществляемый не за счет энергии света, а за счет энергии окисления неорганических веществ, называется хемосинтезом . К хемосинтезирующим организмам относятся некоторые виды бактерий.

Нитрифицирующие бактерии окисляют аммиак до азотистой, а затем до азотной кислоты (NH 3 → HNO 2 → HNO 3).

Железобактерии превращают закисное железо в окисное (Fe 2+ → Fe 3+).

Серобактерии окисляют сероводород до серы или серной кислоты (H 2 S + ½O 2 → S + H 2 O, H 2 S + 2O 2 → H 2 SO 4).

В результате реакций окисления неорганических веществ выделяется энергия, которая запасается бактериями в форме макроэргических связей АТФ. АТФ используется для синтеза органических веществ, который проходит аналогично реакциям темновой фазы фотосинтеза.

Хемосинтезирующие бактерии способствуют накоплению в почве минеральных веществ, улучшают плодородие почвы, способствуют очистке сточных вод и др.

    Перейти к лекции №11 «Понятие об обмене веществ. Биосинтез белков»

    Перейти к лекции №13 «Способы деления эукариотических клеток: митоз, мейоз, амитоз»

 


Читайте:



Завершился вывод войск ссср из афганистана

Завершился вывод войск ссср из афганистана

В 1987 году в Афганистане начала осуществляться политика национального примирения, принятая и одобренная на Пленуме ЦК НДПА в декабре 1986 года....

Новое направление: инноватика Сложно ли учиться на инноватике

Новое направление: инноватика Сложно ли учиться на инноватике

Предоставляют массу возможностей для выбора профессионального направления. Многие из предметов и направлений обозначены достаточно непонятными...

К чему снится племянница

К чему снится племянница

Учеными было установлено, что чаще всего, людям снится о любимых родственниках сон. Племянник, привидевшийся во время ночного отдыха, может...

Репейник: толкование сновидения

Репейник: толкование сновидения

Сонник репейник толкует как символ стремления к особой защищенности от возможных неприятностей. Сон, в котором вы видели одиноко стоящий куст,...

feed-image RSS