Главная - Трубы
Решить однородное уравнение. Однородные уравнения. Исчерпывающий гид (2019)

Функция f(x,y) называется однородной функцией своих аргументов измерения n , если справедливо тождество f(tx,ty) \equiv t^nf(x,y) .

Например, функция f(x,y)=x^2+y^2-xy есть однородная функция второго измерения, так как

F(tx,ty)=(tx)^2+(ty)^2-(tx)(ty)=t^2(x^2+y^2-xy)=t^2f(x,y).

При n=0 имеем функцию нулевого измерения. Например, \frac{x^2-y^2}{x^2+y^2} есть однородная функция нулевого измерения, так как

{f(tx,ty)=\frac{(tx)^2-(ty)^2}{(tx)^2+(ty)^2}=\frac{t^2(x^2-y^2)}{t^2(x^2+y^2)}=\frac{x^2-y^2}{x^2+y^2}=f(x,y).}

Дифференциальное уравнение вида \frac{dy}{dx}=f(x,y) называется однородным относительно x и y , если f(x,y) есть однородная функция своих аргументов нулевого измерения. Однородное уравнение всегда можно представить в виде

\frac{dy}{dx}=\varphi\!\left(\frac{y}{x}\right).

Вводя новую искомую функцию u=\frac{y}{x} , уравнение (1) можно привести к уравнению с разделяющими переменными:

X\frac{du}{dx}=\varphi(u)-u.

Если u=u_0 есть корень уравнения \varphi(u)-u=0 , то решение однородного уравнения будет u=u_0 или y=u_0x (прямая, проходящая через начало координат).

Замечание. При решении однородных уравнений необязательно приводить их к виду (1). Можно сразу делать подстановку y=ux .

Пример 1. Решить однородное уравнение xy"=\sqrt{x^2-y^2}+y .

Решение. Запишем уравнение в виде y"=\sqrt{1-{\left(\frac{y}{x}\right)\!}^2}+\frac{y}{x} так что данное уравнение оказывается однородным относительно x и y . Положим u=\frac{y}{x} , или y=ux . Тогда y"=xu"+u . Подставляя в уравнение выражения для y и y" , получаем x\frac{du}{dx}=\sqrt{1-u^2} . Разделяем переменные: \frac{du}{1-u^2}=\frac{dx}{x} . Отсюда интегрированием находим

\arcsin{u}=\ln|x|+\ln{C_1}~(C_1>0) , или \arcsin{u}=\ln{C_1|x|} .

Так как C_1|x|=\pm{C_1x} , то, обозначая \pm{C_1}=C , получаем \arcsin{u}=\ln{Cx} , где |\ln{Cx}|\leqslant\frac{\pi}{2} или e^{-\pi/2}\leqslant{Cx}\leqslant{e^{\pi/2}} . Заменяя u на \frac{y}{x} , будем иметь общий интеграл \arcsin{y}{x}=\ln{Cx} .

Отсюда общее решение: y=x\sin\ln{Cx} .

При разделении переменных мы делили обе части уравнения на произведение x\sqrt{1-u^2} , поэтому могли потерять решение, которые обращают в ноль это произведение.

Положим теперь x=0 и \sqrt{1-u^2}=0 . Но x\ne0 в силу подстановки u=\frac{y}{x} , а из соотношения \sqrt{1-u^2}=0 получаем, что 1-\frac{y^2}{x^2}=0 , откуда y=\pm{x} . Непосредственной проверкой убеждаемся, что функции y=-x и y=x также являются решениями данного уравнения.


Пример 2. Рассмотреть семейство интегральных кривых C_\alpha однородного уравнения y"=\varphi\!\left(\frac{y}{x}\right) . Показать, что касательные в соответственных точках к кривым, определяемым этим однородным дифференциальным уравнением, параллельны между собой.

Примечание: Будем называть соответственными те точки на кривых C_\alpha , которые лежат на одном луче, выходящем из начала координат.

Решение. По определению соответственных точек имеем \frac{y}{x}=\frac{y_1}{x_1} , так что в силу самого уравнения y"=y"_1 , где y" и y"_1 - угловые коэффициенты касательных к интегральным кривым C_\alpha и C_{\alpha_1} , в точках M и M_1 соответственно (рис. 12).

Уравнения, приводящиеся к однородным

А. Рассмотрим дифференциальное уравнение вида

\frac{dy}{dx}=f\!\left(\frac{ax+by+c}{a_1x+b_1y+c_1}\right).

где a,b,c,a_1,b_1,c_1 - постоянные, а f(u) - непрерывная функция своего аргумента u .

Если c=c_1=0 , то уравнение (3) является однородным и оно интегрируется, как указано выше.

Если хотя бы одно из чисел c,c_1 отлично от нуля, то следует различать два случая.

1) Определитель \Delta=\begin{vmatrix}a&b\\a_1&b_1\end{vmatrix}\ne0 . Вводя новые переменные \xi и \eta по формулам x=\xi+h,~y=\eta+k , где h и k - пока неопределенные постоянные, приведем уравнение (3) к виду

\frac{d\eta}{d\xi}=f\!\left(\frac{a\xi+b\eta+ah+bk+c}{a_1\xi+b_2\eta+a_1h+b_1k+c_1}\right).

Выбирая h и k как решение системы линейных уравнений

\begin{cases}ah+bk+c=0,\\a_1h+b_1k+c_1=0\end{cases}~(\Delta\ne0),

получаем однородное уравнение \frac{d\eta}{d\xi}=f\!\left(\frac{a\xi+b\eta}{a_1\xi+b_1\eta}\right) . Найдя его общий интеграл и заменив в нем \xi на x-h , a \eta на y-k , получаем общий интеграл уравнения (3).

2) Определитель \Delta=\begin{vmatrix}a&b\\a_1&b_1\end{vmatrix}=0 . Система (4) в общем случае не имеет решений и изложенный выше метод неприменим; в этом случае \frac{a_1}{a}=\frac{b_1}{b}=\lambda , и, следовательно, уравнение (3) имеет вид \frac{dy}{dx}=f\!\left(\frac{ax+by+c}{\lambda(ax+by)+c_1}\right) . Подстановка z=ax+by приводит его к уравнению с разделяющимися переменными.

Пример 3. Решить уравнение (x+y-2)\,dx+(x-y+4)\,dy=0 .

Решение. Рассмотрим систему линейных алгебраических уравнений \begin{cases}x+y-2=0,\\x-y+4=0.\end{cases}

Определитель этой системы \Delta=\begin{vmatrix}\hfill1&\hfill1\\\hfill1&\hfill-1\end{vmatrix}=-2\ne0 .

Система имеет единственное решение x_0=-1,~y_0=3 . Делаем замену x=\xi-1,~y=\eta+3 . Тогда уравнение (5) примет вид

(\xi+\eta)\,d\xi+(\xi-\eta)\,d\eta=0.

Это уравнение является однородным уравнением. Полагая \eta=u\xi , получаем

(\xi+\xi{u})\,d\xi+(\xi-\xi{u})(\xi\,du+u\,d\xi)=0 , откуда (1+2u-u^2)\,d\xi+\xi(1-u)\,du=0 .

Разделяем переменные \frac{d\xi}{\xi}+\frac{1-u}{1+2u-u^2}\,du=0.

Интегрируя, найдем \ln|\xi|+\frac{1}{2}\ln|1+2u-u^2|=\ln{C} или \xi^2(1+2u-u^2)=C .

Возвращаемся к переменным x,~y :

(x+1)^2\left=C_1 или x^2+2xy-y^2-4x+8y=C~~(C=C_1+14).

Пример 4. Решить уравнение (x+y+1)\,dx+(2x+2y-1)\,dy=0 .

Решение. Система линейных алгебраических уравнений \begin{cases}x+y+1=0,\\2x+2y-1=0\end{cases} несовместна. В этом случае метод, примененный в предыдущем примере, не подходит. Для интегрирования уравнения применяем подстановку x+y=z , dy=dz-dx . Уравнение примет вид

(2-z)\,dx+(2z-1)\,dz=0.

Разделяя переменные, получаем

Dx-\frac{2z-1}{z-2}\,dz=0 отсюда x-2z-3\ln|z-2|=C.

Возвращаясь к переменным x,~y , получаем общий интеграл данного уравнения

X+2y+3\ln|x+y-2|=C.

Б. Иногда уравнение можно привести к однородному заменой переменного y=z^\alpha . Это имеет место в том случае, когда в уравнении все члены оказываются одинакового измерения, если переменному x приписать измерение 1, переменному y - измерение \alpha и производной \frac{dy}{dx} - измерение \alpha-1 .

Пример 5. Решить уравнение (x^2y^2-1)\,dy+2xy^3\,dx=0 .

Решение. Делаем подстановку y=z^\alpha,~dy=\alpha{z^{\alpha-1}}\,dz , где \alpha пока произвольное число, которое мы выберем позже. Подставляя в уравнение выражения для y и dy , получим

\alpha(x^2x^{2\alpha}-1)z^{\alpha-1}\,dz+2xz^{3\alpha}\,dx=0 или \alpha(x^2z^{3\alpha-1}-z^{\alpha-1})\,dz+2xz^{3\alpha}\,dx=0,

Заметим, что x^2z^{3\alpha-1} имеет измерение 2+3\alpha-1=3\alpha+1, z^{\alpha-1} имеет измерение \alpha-1 , xz^{3\alpha} имеет измерение 1+3\alpha . Полученное уравнение будет однородным, если измерения всех членов одинаковы, т.е. если выполняется условие 3\alpha+1=\alpha-1 , или \alpha-1 .

Положим y=\frac{1}{z} ; исходное уравнение принимает вид

\left(\frac{1}{z^2}-\frac{x^2}{z^4}\right)dz+\frac{2x}{z^3}\,dx=0 или (z^2-x^2)\,dz+2xz\,dx=0.

Положим теперь z=ux,~dz=u\,dx+x\,du . Тогда это уравнение примет вид (u^2-1)(u\,dx+x\,du)+2u\,dx=0 , откуда u(u^2+1)\,dx+x(u^2-1)\,du=0 .

Разделяем переменные в этом уравнении \frac{dx}{x}+\frac{u^2-1}{u^3+u}\,du=0 . Интегрируя, найдем

\ln|x|+\ln(u^2+1)-\ln|u|=\ln{C} или \frac{x(u^2+1)}{u}=C.

Заменяя u через \frac{1}{xy} , получаем общий интеграл данного уравнения 1+x^2y^2=Cy.

Уравнение имеет еще очевидное решение y=0 , которое получается из общего интеграла при C\to\infty , если интеграл записать в виде y=\frac{1+x^2y^2}{C} , а затем перейти к пределу при C\to\infty . Таким образом, функция y=0 является частным решением исходного уравнения.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Однородное дифференциальное уравнение первого порядка - это уравнение вида
, где f - функция.

Как определить однородное дифференциальное уравнение

Для того, чтобы определить, является ли дифференциальное уравнение первого порядка однородным, нужно ввести постоянную t и заменить y на ty и x на tx : y → ty , x → tx . Если t сократится, то это однородное дифференциальное уравнение . Производная y′ при таком преобразовании не меняется.
.

Пример

Определить, является ли данное уравнение однородным

Решение

Делаем замену y → ty , x → tx .


Делим на t 2 .

.
Уравнение не содержит t . Следовательно, это однородное уравнение.

Метод решения однородного дифференциального уравнения

Однородное дифференциальное уравнение первого порядка приводится к уравнению с разделяющимися переменными с помощью подстановки y = ux . Покажем это. Рассмотрим уравнение:
(i)
Делаем подстановку:
y = ux ,
где u - функция от x . Дифференцируем по x :
y′ =
Подставляем в исходное уравнение (i) .
,
,
(ii) .
Разделяем переменные. Умножаем на dx и делим на x ( f(u) - u ) .

При f(u) - u ≠ 0 и x ≠ 0 получаем:

Интегрируем:

Таким образом, мы получили общий интеграл уравнения (i) в квадратурах:

Заменим постоянную интегрирования C на ln C , тогда

Опустим знак модуля, поскольку нужный знак определяется выбором знака постоянной C . Тогда общий интеграл примет вид:

Далее следует рассмотреть случай f(u) - u = 0 .
Если это уравнение имеет корни, то они являются решением уравнения (ii) . Поскольку уравнение (ii) не совпадает с исходным уравнением, то следует убедиться, что дополнительные решения удовлетворяют исходному уравнению (i) .

Всякий раз, когда мы, в процессе преобразований, делим какое либо уравнение на некоторую функцию, которую обозначим как g(x, y) , то дальнейшие преобразования справедливы при g(x, y) ≠ 0 . Поэтому следует отдельно рассматривать случай g(x, y) = 0 .

Пример решения однородного дифференциального уравнения первого порядка

Решить уравнение

Решение

Проверим, является ли данное уравнение однородным. Делаем замену y → ty , x → tx . При этом y′ → y′ .
,
,
.
Сокращаем на t .

Постоянная t сократилась. Поэтому уравнение является однородным.

Делаем подстановку y = ux , где u - функция от x .
y′ = (ux) ′ = u′ x + u (x) ′ = u′ x + u
Подставляем в исходное уравнение.
,
,
,
.
При x ≥ 0 , |x| = x . При x ≤ 0 , |x| = - x . Мы пишем |x| = ± x подразумевая, что верхний знак относится к значениям x ≥ 0 , а нижний - к значениям x ≤ 0 .
,
Умножаем на ± dx и делим на .

При u 2 - 1 ≠ 0 имеем:

Интегрируем:

Интегралы табличные ,
.

Применим формулу:
(a + b)(a - b) = a 2 - b 2 .
Положим a = u , .
.
Возьмем обе части по модулю и логарифмируем,
.
Отсюда
.

Таким образом имеем:
,
.
Опускаем знак модуля, поскольку нужный знак обеспечивается выбором знака постоянной C .

Умножаем на x и подставляем ux = y .
,
.
Возводим в квадрат.
,
,
.

Теперь рассмотрим случай, u 2 - 1 = 0 .
Корни этого уравнения
.
Легко убедиться, что функции y = ± x удовлетворяют исходному уравнению.

Ответ

,
,
.

Использованная литература:
Н.М. Гюнтер, Р.О. Кузьмин, Сборник задач по высшей математике, «Лань», 2003.

Готовые ответы к примерам на однородные дифференциальные уравнения первого порядка ищут многие студенты (ДУ 1 порядка самые распространенные в обучении), далее Вы их сможете подробно разобрать. Но прежде чем перейти к рассмотрению примеров рекомендуем внимательно прочитать краткий теоретический материал.
Уравнения вида P(x,y)dx+Q(x,y)dy=0, где функции P(x,y) і Q(x,y) являются однородными функциями одного порядка называют однородным дифференциальным уравнением (ОДР).

Схема решения однородного дифференциального уравнения

1. Сначала нужно применить подстановку y=z*x , где z=z(x) – новая неизвестная функция (таким образом исходное уравнение сводится к дифференциальному уравнению с разделяющимися переменными.
2. Производная произведения равна y"=(z*x)"=z"*x+z*x"=z"*x+z или в дифференциалах dy=d(zx)=z*dx+x*dz.
3. Далее подставляем новую функцию у и ее производную y" (или dy ) в ДУ с разделяющимися переменными относительно x та z .
4. Решив дифференциальное уравнение с разделяющимися переменными, сделаем обратную замену y=z*x , поэтому z= y/х , и получим общее решение (общий интеграл) дифференциального уравнения .
5. Если задано начальное условие y(x 0)=y 0 , то находим частное решение задачи Коши. В теории все звучит легко, однако на практике не у всех так весело получается решать дифференциальные уравнения. Поэтому для углубления знаний рассмотрим распространенные примеры. На легких задачах нет особо Вас научить, поэтому сразу перейдем к более сложным.

Вычисления однородных дифференциальных уравнений первого порядка

Пример 1.

Решение: Делим правую сторону уравнения на переменную, которая стоит множителем возле производной. В результате придем к однородного дифференциального уравнения 0 порядка

И здесь многим пожалуй стало интересно, как определить порядок функции однородного уравнения?
Вопрос достаточно уместен, а ответ на него следующий:
в правую сторону подставляем вместо функции и аргумента значение t*x, t*y . При упрощении получают параметр "t" в определенном степени k , его и называют порядком уравнения. В нашем случае "t" сократится, что равносильно 0-м степени или нулевом порядке однородного уравнения.
Далее в правой стороне можем перейти к новой переменной y=zx; z=y/x .
При этом не забываем выразить производную "y" через производную новой переменной. По правилу части находим

Уравнения в дифференциалах примет вид

Совместные слагаемые в правой и левой части сокращаем и переходим к дифференциальному уравнению с разделенными переменными.

Проинтегрируем обе части ДУ

Для удобства дальнейших преобразований постоянную сразу вносим под логарифм

По свойствам логарифмов полученное логарифмическое уравнение эквивалентно следующему

Эта запись еще не решение (ответ), необходимо вернуться к выполненной замене переменных

Таким образом находят общее решение дифференциальных уравнений . Если Вы внимательно читали предыдущие уроки, то мы говорили, что схему вычисления уравнений с разделенными переменными Вы должны уметь применять свободно и такого рода уравнения придется вычислять для более сложных типов ДУ.

Пример 2. Найти интеграл дифференциального уравнения

Решение: Схема вычислений однородных и сводных к ним ДУ Вам тепер знакома. Переносим переменную в правую сторону уравнения, а также в числителе и знаменателе выносим x 2 , как общий множитель

Таким образом получим однородное ДУ нулевого порядка.
Следующим шагом вводим замену переменных z=y/x, y=z*x , о которой постоянно будем напоминать, чтобы Вы ее заучили

После этого ДУ записываем в дифференциалах

Далее преобразуем зависимость к дифференциальному уравнению с отделенными переменными

и интегрированием решаем его.

Интегралы несложные, остальные преобразования выполнены на основе свойств логарифма. Последнее действие включает экспонирования логарифма. Наконец возвращаемся к исходной замене и записываем в форме

Константа "C" принимает любое значение. Все кто учится заочно имеют проблемы на экзаменах с данным типом уравнений, поэтому просьба внимательно посмотреть и запомнить схему вычислений.

Пример 3. Решить дифференциальное уравнение

Решение: Как следует из приведенной выше методики, дифференциальные уравнения такого типа решают методом введения новой переменной. Перепишем зависимость так, чтобы производная была без переменной

Далее по анализу правой части видим, что везде присутствует частка -ее и обозначаем за новую неизвестную
z=y/x, y=z*x .
Находим производную от y

С учетом замены первоначальное ДУ перепишем в виде

Одинаковые слагаемые упрощаем, а все получившие сводим к ДУ с отделенными переменными

Интегрированием обеих частей равенства

приходим к решению в виде логарифмов

Экспонируя зависимости находим общее решение дифференциального уравнения

которое после подстановки в него начальной замены переменных примет вид

Здесь С - постоянная, которую можно доопределить из условия Коши. Если не задана задача Коши то стала принимает произвольное действительное значение.
Вот и вся мудрость в исчислении однородных дифференциальных уравнений.

Например, функция
- однородная функция первого измерения, так как

- однородная функция третьего измерения, так как

- однородная функция нулевого измерения, так как

, т.е.
.

Определение 2. Дифференциальное уравнение первого порядкаy " = f (x , y ) называется однородным, если функцияf (x , y ) есть однородная функция нулевого измерения относительноx иy , или, как говорят,f (x , y ) – однородная функция степени нуль.

Его можно представить в виде

что позволяет определить однородное уравнение как такое дифференциальное, которое можно преобразовать к виду (3.3).

Замена
приводит однородное уравнение к уравнению с разделяющимися переменными. Действительно, после подстановкиу = xz получим
,
Разделяя переменные и интегрируя, найдем:


,

Пример 1.Решить уравнение.

Δ Полагаем у = zx ,
Подставляем эти выраженияy иdy в данное уравнение:
или
Разделяем переменные:
и интегрируем:
,

Заменяя z на, получим
.

Пример 2. Найти общее решение уравнения.

Δ В данном уравнении P (x ,y ) =x 2 -2y 2 ,Q (x ,y ) =2xy – однородные функции второго измерения, следовательно, данное уравнение является однородным. Его можно представить в виде
и решать так же, как и представленное выше. Но используем другую форму записи. Положимy = zx , откудаdy = zdx + xdz . Подставляя эти выражения в исходное уравнение, будем иметь

dx +2 zxdz = 0 .

Разделяем переменные, считая

.

Интегрируем почленно это уравнение

, откуда

то есть
. Возвращаясь к прежней функции
находим общее решение

Пример 3 . Найти общее решение уравнения
.

Δ Цепочка преобразований: ,y = zx ,
,
,
,
,
,
,
,
, ,
.

Лекция 8.

4. Линейные дифференциальные уравнения первого порядка Линейное дифференциальное уравнение первого порядка имеет вид

Здесь – свободный член, называемый также правой частью уравнения. В этом виде будем рассматривать линейное уравнение в дальнейшем.

Если
0, то уравнение (4.1а) называется линейным неоднородным. Если же
0, то уравнение принимает вид

и называется линейным однородным.

Название уравнения (4.1а) объясняется тем, что неизвестная функция y и её производнаявходят в него линейно, т.е. в первой степени.

В линейном однородном уравнении переменные разделяются. Переписав его в виде
откуда
и интегрируя, получаем:
,т.е.


При делении на теряем решение
. Однако оно может быть включено в найденное семейство решений (4.3), если считать, чтоС может принимать и значение 0.

Существует несколько методов решения уравнения (4.1а). Согласно методу Бернулли , решение ищется в виде произведения двух функций отх :

Одна из этих функций может быть выбрана произвольно, так как лишь произведение uv должно удовлетворять исходному уравнению, другая определяется на основании уравнения (4.1а).

Дифференцируя обе части равенства (4.4), находим
.

Подставляя полученное выражение производной , а также значениеу в уравнение (4.1а), получаем
, или

т.е. в качестве функции v возьмём решение однородного линейного уравнения (4.6):

(Здесь C писать обязательно, иначе получится не общее, а частное решение).

Таким образом, видим, что в результате используемой подстановки (4.4) уравнение (4.1а) сводится к двум уравнениям с разделяющимися переменными (4.6) и (4.7).

Подставляя
иv (x) в формулу (4.4), окончательно получаем

,

.

Пример 1. Найти общее решение уравнения

 Положим
, тогда
. Подставляя выраженияив исходное уравнение, получим
или
(*)

Приравняем нулю коэффициент при :

Разделяя переменные в полученном уравнении, имеем


(произвольную постояннуюC не пишем), отсюдаv = x . Найденное значениеv подставляем в уравнение (*):

,
,
.

Следовательно,
общее решение исходного уравнения.

Отметим, что уравнение (*) можно было записать в эквивалентном виде:

.

Произвольно выбирая функцию u , а неv , мы могли полагать
. Этот путь решения отличается от рассмотренного только заменойv наu (и, следовательно,u наv ), так что окончательное значениеу оказывается тем же самым.

На основании изложенного выше получаем алгоритм решения линейного дифференциального уравнения первого порядка.


Отметим далее, что иногда уравнение первого порядка становится линейным, если у считать независимой переменной, аx – зависимой, т.е. поменять ролиx иy . Это можно сделать при условии, чтоx иdx входят в уравнение линейно.

Пример 2 . Решить уравнение
.

    По виду это уравнение не является линейным относительно функции у .

Однако если рассматривать x как функцию оту , то, учитывая, что
,его можно привести к виду

(4.1 б )

Заменив на,получим
или
. Разделив обе части последнего уравнения на произведениеydy , приведем его к виду

, или
. (**)

Здесь P(y)=,
. Это линейное уравнение относительноx . Полагаем
,
. Подставляя эти выражения в (**), получаем

или
.

Выберем vтак, чтобы
,
, откуда
;
. Далее имеем
,
,
.

Т.к.
, то приходим к общему решению данного уравнения в виде

.

Отметим, что в уравнение (4.1а) P (x ) иQ (x ) могут входить не только в виде функций от x , но и констант:P = a ,Q = b . Линейное уравнение

можно решать и с помощью подстановки y=uv и разделением переменных:

;
.

Отсюда
;
;
; где
. Освобождаясь от логарифма, получаем общее решение уравнения

(здесь
).

При b = 0 приходим к решению уравнения

(см. уравнение показательного роста (2.4) при
).

Сначала интегрируем соответствующее однородное уравнение (4.2). Как указано выше, его решение имеет вид (4.3). Будем считать сомножитель С в (4.3) функцией отх , т.е. по существу делаем замену переменной

откуда, интегрируя, находим

Отметим, что согласно (4.14) (см. также (4.9)), общее решение неоднородного линейного уравнения равно сумме общего решения соответствующего однородного уравнения (4.3) и частного решения неоднородного уравнения, определяемого вторым слагаемым, входящим в (4.14) (и в (4.9)).

При решении конкретных уравнений следует повторять приведённые выше выкладки, а не использовать громоздкую формулу (4.14).

Применим метод Лагранжа к уравнению, рассмотренному в примере 1 :

.

Интегрируем соответствующее однородное уравнение
.

Разделяя переменные, получаем
и далее
. Решение выражения формулойy = Cx . Решение исходного уравнения ищем в видеy = C (x )x . Подставив это выражение в заданное уравнение, получим
;
;
,
. Общее решение исходного уравнения имеет вид

.

В заключение отметим, что к линейному уравнению приводится уравнение Бернулли

, (
)

которое можно записать в виде

.

Заменой
оно приводится к линейному уравнению:

,
,
.

Уравнения Бернулли также решаются изложенными выше методами.

Пример 3 . Найти общее решения уравнения
.

 Цепочка преобразований:
,
,,
,
,
,
,
,
,
,
,
,
,
,

 


Читайте:



Завершился вывод войск ссср из афганистана

Завершился вывод войск ссср из афганистана

В 1987 году в Афганистане начала осуществляться политика национального примирения, принятая и одобренная на Пленуме ЦК НДПА в декабре 1986 года....

Новое направление: инноватика Сложно ли учиться на инноватике

Новое направление: инноватика Сложно ли учиться на инноватике

Предоставляют массу возможностей для выбора профессионального направления. Многие из предметов и направлений обозначены достаточно непонятными...

К чему снится племянница

К чему снится племянница

Учеными было установлено, что чаще всего, людям снится о любимых родственниках сон. Племянник, привидевшийся во время ночного отдыха, может...

Репейник: толкование сновидения

Репейник: толкование сновидения

Сонник репейник толкует как символ стремления к особой защищенности от возможных неприятностей. Сон, в котором вы видели одиноко стоящий куст,...

feed-image RSS