Главная - Душевые кабины
Общее решение дифференциального уравнения 2 порядка. Дифференциальные уравнения второго порядка и высших порядков. Линейные ДУ второго порядка с постоянными коэффициентами. Примеры решений

В этом параграфе будет рассмотрен частный случай линейных уравнений второго порядка, когда коэффициенты уравнения постоянны, т. е. являются числами. Такие уравнения называются уравнениями с постоянными коэффициентами. Этот вид уравнений находит особенно широкое применение.

1. Линейные однородные дифференциальные уравнения

второго порядка с постоянными коэффициентами

Рассмотрим уравнение

в котором коэффициенты постоянны. Полагая, что деля все члены уравнения на и обозначая

запишем данное уравнение в виде

Как известно, для нахождения общего решения линейного однородного уравнения второго порядка достаточно знать его фундаментальную систему частных решений. Покажем, как находится фундаментальная система частных решений для однородного линейного дифференциального уравнения с постоянными коэффициентами. Будем искать частное решение этого уравнения в виде

Дифференцируя эту функцию два раза и подставляя выражения для в уравнение (59), получим

Так как , то, сокращая на получим уравнение

Из этого уравнения определяются те значения k, при которых функция будет решением уравнения (59).

Алгебраическое уравнение (61) для определения коэффициента к называется характеристическим уравнением данного дифференциального уравнения (59).

Характеристическое уравнение является уравнением второй степени и имеет, следовательно, два корня. Эти корни могут быть либо действительными различными, либо действительными и равными, либо комплексными сопряженными.

Рассмотрим, какой вид имеет фундаментальная система частных решений в каждом из этих случаев.

1. Корни характеристического уравнения действительные и различные: . В этом случае по формуле (60) находим два частных решения:

Эти два частных решения образуют фундаментальную систему решений на всей числовой оси, так как определитель Вронского нигде не обращается в нуль:

Следовательно, общее решение уравнения согласно формуле (48) имеет вид

2. Корни характеристического уравнения равные: . В этом случае оба корня будут действительными. По формуле (60) получаем только одно частное решение

Покажем, что второе частное решение образующее вместе с первым фундаментальную систему, имеет вид

Прежде всего проверим, что функция является решением уравнения (59). Действительно,

Но , так как есть корень характеристического уравнения (61). Кроме того, по теореме Виета Поэтому . Следовательно, , т. е. функция действительно является решением уравнения (59).

Покажем теперь, что найденные частные решения образуют фундаментальную систему решений. Действительно,

Таким образом, в этом случае общее решение однородного линейного уравнения имеет вид

3. Корни характеристического уравнения комплексные. Как известно, комплексные корни квадратного уравнения с действительными коэффициентами являются сопряженными комплексными числами, т. е. имеют вид: . В этом случае частные решения уравнения (59), согласно формуле (60), будут иметь вид:

Применяя формулы Эйлера (см. гл. XI, § 5 п. 3), выражения для можно записать в виде:

Эти решения являются комплексными. Чтобы получить действительные решения, рассмотрим новые функции

Они являются линейными комбинациями решений и, следовательно, сами являются решениями уравнения (59) (см. § 3, п. 2, теорему 1).

Легко показать, что определитель Вронского для этих решений отличен от нуля и, следовательно, решения образуют фундаментальную систему решений.

Таким образом, общее решение однородного линейного дифференциального уравнения в случае комплексных корней характеристического уравнения имеет вид

Приведем в заключение таблицу формул общего решения уравнения (59) в зависимости от вида корней характеристического уравнения.

Уравнение

где и – непрерывные функция в интервале называется неоднородным линейным дифференциальным уравнение второго порядка, функции и – его коэффицинентами. Если в этом интервале, то уравнение принимает вид:

и называется однородным линейным дифференциальным уравнением второго порядка. Если уравнение (**) имеет те же коэффициенты и , как уравнение (*), то оно называется однородным уравнением, соответствующим неоднородному уравнению (*).

Однородные дифференциальные линейные уравнения второго порядка

Пусть в линейном уравнении

И - постоянные действительные числа.

Частное решение уравнения будем искать в виде функции , где – действительное или комплексное число, подлежащее определению. Дифференцируя по , получаем:

Подставляя в исходное дифуравнение, получаем:

Отсюда, учитывая, что , имеем:

Это уравнение называется характеристическим уравнением однородного линейного дифуравнения. Характеристическое уравнение и дает возможность найти . Это уравнение второй степени, поэтому имеет два корня. Обозначим их через и . Возможны три случая:

1) Корни действительные и разные . В этом случае общее решение уравнения:

Пример 1

2) Корни действительные и равные . В этом случае общее решение уравнения:

Пример 2

Оказались на этой странице, пытаясь решить задачу на экзамене или зачете? Если так и не смогли сдать экзамен - в следующий раз договоритесь заранее на сайте об Онлайн помощи по высшей математике .

Характеристическое уравнение имеет вид:

Решение характеристического уравнения:

Общее решение исходного дифуравнения:

3) Корни комплексные . В этом случае общее решение уравнения:

Пример 3

Характеристическое уравнение имеет вид:

Решение характеристического уравнения:

Общее решение исходного дифуравнения:

Неоднородные дифференциальные линейные уравнения второго порядка

Рассмотрим теперь решение некоторых типов линейного неоднородного уравнения второго порядка с постоянными коэффициентами

где и – постоянные действительные числа, – известная непрерывная функция в интервале . Для нахождения общего решения такого дифференциального уравнения необходимо знать общее решение соответствующего однородного дифференциального уравнения и частное решение . Рассмотрим некоторые случаи:

Частное решение дифференциального уравнения ищем также в форме квадратного трехчлена:

Если 0 – однократный корень характеристического уравнения, то

Если 0 – двухкратный корень характеристического уравнения, то

Аналогично обстоит дело, если – многочлен произвольной степени

Пример 4

Решим соответствующее однородное уравнение.

Характеристическое уравнение:

Общее решение однородного уравнения:

Найдем частное решение неоднородного дифуравнения:

Подставляя найденные производные в исходное дифуравнение, получаем:

Искомое частное решение:

Общее решение исходного дифуравнения:

Частное решение ищем в виде , где – неопределенный коэффициент.

Подставляя и в исходное дифференциальное уравнение, получим тождество, откуда находим коэффициент.

Если – корень характеристического уравнения, то частное решение исходного дифференциального уравнения ищем в виде , когда – однократный корень, и , когда – двукратный корень.

Пример 5

Характеристическое уравнение:

Общее решение соответствующего однородного дифференциального уравнения:

Найдем частное решение соответствующего неоднородного дифференциального уравнения:

Общее решение дифуравнения:

В этом случае частное решение ищем в форме тригонометрического двучлена:

где и – неопределенные коэффициенты

Подставляя и в исходное дифференциальное уравнение, получим тождество, откуда находим коэффициенты.

Эти уравнения определяют коэффициенты и кроме случая, когда (или когда – корни характеристического уравнения). В последнем случае частное решение дифференциального уравнения ищем в виде:

Пример 6

Характеристическое уравнение:

Общее решение соответствующего однородного дифуравнения:

Найдем частное решение неоднородного дифуравнения

Подставляя в исходное дифуравнение, получаем:

Общее решение исходного дифуравнения:

Сходимость числового ряда
Дано определение сходимости ряда и подробно рассматриваются задачи на исследование сходимости числовых рядов - признаки сравнения, признак сходимости Даламбера, признак сходимости Коши и интегральный признак сходимости Коши⁡.

Абсолютная и условная сходимость ряда
На странице рассмотрены знакочередующиеся ряды, их условная и абсолютная сходимость, признак сходимости Лейбница для знакочередующихся рядов - содержится краткая теория по теме и пример решения задачи.

Дифференциальные уравнения 2-го порядка

§1. Методы понижения порядка уравнения.

Дифференциальное уравнение 2-го порядка имеет вид:

https://pandia.ru/text/78/516/images/image002_107.gif" width="19" height="25 src=">.gif" width="119" height="25 src="> (или Дифференциал" href="/text/category/differentcial/" rel="bookmark">дифференциального уравнения 2-го порядка). Задача Коши для дифференциального уравнения 2-го порядка (1..gif" width="85" height="25 src=">.gif" width="85" height="25 src=">.gif" height="25 src=">.

Пусть дифференциальное уравнение 2-го порядка имеет вид: https://pandia.ru/text/78/516/images/image009_41.gif" height="25 src=">..gif" width="39" height="25 src=">.gif" width="265" height="28 src=">.

Таким образом, уравнение 2-го порядка https://pandia.ru/text/78/516/images/image015_28.gif" width="34" height="25 src=">.gif" width="118" height="25 src=">.gif" width="117" height="25 src=">.gif" width="34" height="25 src=">. Решая его, получаем общий интеграл исходного дифференциального уравнения, зависящий от двух произвольных постоянных: https://pandia.ru/text/78/516/images/image020_23.gif" width="95" height="25 src=">.gif" width="76" height="25 src=">.

Решение.

Так как в исходном уравнении в явном виде отсутствует аргумент https://pandia.ru/text/78/516/images/image011_39.gif" height="25 src=">.gif" width="35" height="25 src=">..gif" width="35" height="25 src=">.gif" width="82" height="38 src="> ..gif" width="99" height="38 src=">.

Так как при https://pandia.ru/text/78/516/images/image029_18.gif" width="85" height="25 src=">.gif" width="42" height="38 src=">.gif" width="34" height="25 src=">.gif" width="68" height="35 src=">..gif" height="25 src=">.

Пусть дифференциальное уравнение 2-го порядка имеет вид: https://pandia.ru/text/78/516/images/image011_39.gif" height="25 src=">..gif" width="161" height="25 src=">.gif" width="34" height="25 src=">.gif" width="33" height="25 src=">..gif" width="225" height="25 src=">..gif" width="150" height="25 src=">.

Пример 2. Найти общее решение уравнения: https://pandia.ru/text/78/516/images/image015_28.gif" width="34" height="25 src=">.gif" width="107" height="25 src=">..gif" width="100" height="27 src=">.gif" width="130" height="37 src=">.gif" width="34" height="25 src=">.gif" width="183" height="36 src=">.

3. Порядок степени понижается, если удается преобразовать его к такому виду, что обе части уравнения становятся полными производными по https://pandia.ru/text/78/516/images/image052_13.gif" width="92" height="25 src=">..gif" width="98" height="48 src=">.gif" width="138" height="25 src=">.gif" width="282" height="25 src=">, (2.1)

где https://pandia.ru/text/78/516/images/image060_12.gif" width="42" height="25 src=">.gif" width="42" height="25 src="> – заданные функции, непрерывные на том промежутке, на котором ищется решение. Предполагая, что a0(x) ≠ 0, поделим (2..gif" width="215" height="25 src="> (2.2)

Примем без доказательства, что (2..gif" width="82" height="25 src=">.gif" width="38" height="25 src=">.gif" width="65" height="25 src=">, то уравнение (2.2) называется однородным, и уравнение (2.2) называется неоднородным в противном случае.

Рассмотрим свойства решений лоду 2-го порядка.

Определение. Линейной комбинацией функций https://pandia.ru/text/78/516/images/image071_10.gif" width="93" height="25 src=">.gif" width="42" height="25 src=">.gif" width="195" height="25 src=">, (2.3)

то их линейная комбинация https://pandia.ru/text/78/516/images/image076_10.gif" width="182" height="25 src="> в (2.3) и покажем, что в результате получается тождество:

https://pandia.ru/text/78/516/images/image078_10.gif" width="368" height="25 src=">.

Поскольку функции https://pandia.ru/text/78/516/images/image074_11.gif" width="42" height="25 src="> являются решениями уравнения (2.3), то каждая из скобок в последнем уравнении тождественно равна нулю, что и требовалось доказать.

Следствие 1. Из доказанной теоремы вытекает при https://pandia.ru/text/78/516/images/image080_10.gif" width="77" height="25 src="> – решение уравнения (2..gif" width="97" height="25 src=">.gif" width="165" height="25 src="> называется линейно независимой на некотором промежутке, если ни одна из этих функций не представляется в виде линейной комбинации всех остальных.

В случае двух функций https://pandia.ru/text/78/516/images/image085_11.gif" width="119" height="25 src=">, т. е..gif" width="77" height="47 src=">.gif" width="187" height="43 src=">.gif" width="42" height="25 src=">. Таким образом, определитель Вронского для двух линейно независимых функций не может быть тождественно равен нулю.

Пусть https://pandia.ru/text/78/516/images/image091_10.gif" width="46" height="25 src=">.gif" width="42" height="25 src=">.gif" width="605" height="50">..gif" width="18" height="25 src="> удовлетворяют уравнению (2..gif" width="42" height="25 src="> – решение уравнения (3.1)..gif" width="87" height="28 src=">..gif" width="182" height="34 src=">..gif" width="162" height="42 src=">.gif" width="51" height="25 src="> получается тождество. Таким образом,

https://pandia.ru/text/78/516/images/image107_7.gif" width="18" height="25 src=">, в которой определитель для линейно независимых решений уравнения (2..gif" width="42" height="25 src=">.gif" height="25 src="> оба множителя в правой части формулы (3.2) отличны от нуля.

§4. Структура общего решения лоду 2-го порядка.

Теорема. Если https://pandia.ru/text/78/516/images/image074_11.gif" width="42" height="25 src="> – линейно независимые решения уравнения (2..gif" width="19" height="25 src=">.gif" width="129" height="25 src=">есть решение уравнения (2.3), следует из теоремы о свойствах решений лоду 2-го порядка..gif" width="85" height="25 src=">.gif" width="19" height="25 src=">.gif" width="220" height="47">

Постоянные https://pandia.ru/text/78/516/images/image003_79.gif" width="19" height="25 src="> из этой системы линейных алгебраических уравнений определяются однозначно, так как определитель этой системы https://pandia.ru/text/78/516/images/image006_56.gif" width="51" height="25 src=">:

https://pandia.ru/text/78/516/images/image116_7.gif" width="138" height="25 src=">.gif" width="19" height="25 src=">.gif" width="69" height="25 src=">.gif" width="235" height="48 src=">..gif" width="143" height="25 src="> (5..gif" width="77" height="25 src=">. Согласно предыдущему параграфу общее решение лоду 2-го порядка легко определяется, если известны два линейно независимых частных решения этого уравнения. Простой метод нахождения частных решений уравнения с постоянными коэффициентами предложил Л. Эйлер..gif" width="25" height="26 src=">, получим алгебраическое уравнение, которое называется характеристическим:

https://pandia.ru/text/78/516/images/image124_5.gif" width="59" height="26 src="> будет решением уравнения (5.1) только при тех значениях k, которые являются корнями характеристического уравнения (5.2)..gif" width="49" height="25 src=">..gif" width="76" height="28 src=">.gif" width="205" height="47 src="> и общее решение (5..gif" width="45" height="25 src=">..gif" width="74" height="26 src=">..gif" width="83" height="26 src=">. Проверим, что эта функция удовлетворяет уравнению (5.1)..gif" width="190" height="26 src=">. Подставляя эти выражения в уравнение (5.1), получим

https://pandia.ru/text/78/516/images/image141_6.gif" width="328" height="26 src=">, т. к..gif" width="137" height="26 src=">.

Частные решения https://pandia.ru/text/78/516/images/image145_6.gif" width="86" height="28 src="> линейно независимы, т. к..gif" width="166" height="26 src=">.gif" width="45" height="25 src=">..gif" width="65" height="33 src=">.gif" width="134" height="25 src=">.gif" width="267" height="25 src=">.gif" width="474" height="25 src=">.

Обе скобки в левой части этого равенства тождественно равны нулю..gif" width="174" height="25 src=">..gif" width="132" height="25 src="> есть решение уравнения (5.1)..gif" width="129" height="25 src="> будет иметь вид:

https://pandia.ru/text/78/516/images/image162_6.gif" width="179" height="25 src="> f(x) (6.1)

представляется в виде суммы общего решения https://pandia.ru/text/78/516/images/image164_6.gif" width="195" height="25 src="> (6.2)

и любого частного решения https://pandia.ru/text/78/516/images/image166_6.gif" width="87" height="25 src="> будет решением уравнения (6.1)..gif" width="272" height="25 src="> f(x). Это равенство является тождеством, т. к..gif" width="128" height="25 src="> f(x). Следовательно.gif" width="85" height="25 src=">.gif" width="138" height="25 src=">.gif" width="18" height="25 src="> – линейно независимые решения этого уравнения. Таким образом:

https://pandia.ru/text/78/516/images/image173_5.gif" width="289" height="48 src=">

https://pandia.ru/text/78/516/images/image002_107.gif" width="19" height="25 src=">.gif" width="11" height="25 src=">.gif" width="51" height="25 src=">, а такой определитель, как мы видели выше, отличен от нуля..gif" width="19" height="25 src="> из системы уравнений (6..gif" width="76" height="25 src=">.gif" width="76" height="25 src=">.gif" width="140" height="25 src="> будет решением уравнения

https://pandia.ru/text/78/516/images/image179_5.gif" width="91" height="25 src="> в уравнение (6.5), получим

https://pandia.ru/text/78/516/images/image181_5.gif" width="140" height="25 src=">.gif" width="128" height="25 src="> f(x) (7.1)

где https://pandia.ru/text/78/516/images/image185_5.gif" width="34" height="25 src="> уравнения (7.1) в случае, когда правая часть f(x) имеет специальный вид. Это метод называется методом неопределенных коэффициентов и состоит в подборе частного решения в зависимости от вида правой части f(x). Рассмотрим правые части следующего вида:

1..gif" width="282" height="25 src=">.gif" width="53" height="25 src=">, могут равняться нулю. Укажем вид, в котором надо брать частное решение в этом случае.

а) Если число https://pandia.ru/text/78/516/images/image191_5.gif" width="393" height="25 src=">.gif" width="157" height="25 src=">.

Решение.

Для уравнения https://pandia.ru/text/78/516/images/image195_4.gif" width="86" height="25 src=">..gif" width="62" height="25 src=">..gif" width="101" height="25 src=">.gif" width="153" height="25 src=">.gif" width="383" height="25 src=">.

Обе части сокращаем на https://pandia.ru/text/78/516/images/image009_41.gif" height="25 src="> в левой и правой частях равенства

https://pandia.ru/text/78/516/images/image206_5.gif" width="111" height="40 src=">

Из полученной системы уравнений находим: https://pandia.ru/text/78/516/images/image208_5.gif" width="189" height="25 src=">, а общее решение заданного уравнения есть:

https://pandia.ru/text/78/516/images/image190_5.gif" width="11" height="25 src=">.gif" width="423" height="25 src=">,

где https://pandia.ru/text/78/516/images/image212_5.gif" width="158" height="25 src=">.

Решение.

Соответствующее характеристическое уравнение имеет вид:

https://pandia.ru/text/78/516/images/image214_6.gif" width="53" height="25 src=">.gif" width="85" height="25 src=">.gif" width="45" height="25 src=">.gif" width="219" height="25 src=">..gif" width="184" height="35 src=">. Окончательно имеем следующее выражение для общего решения:

https://pandia.ru/text/78/516/images/image223_4.gif" width="170" height="25 src=">.gif" width="13" height="25 src="> отлично от нуля. Укажем вид частного решения в этом случае.

а) Если число https://pandia.ru/text/78/516/images/image227_5.gif" width="204" height="25 src=">,

где https://pandia.ru/text/78/516/images/image226_5.gif" width="16" height="25 src="> является корнем характеристического уравнения для уравнения (5..gif" width="229" height="25 src=">,

где https://pandia.ru/text/78/516/images/image229_5.gif" width="147" height="25 src=">.

Решение.

Корни характеристического уравнения для уравнения https://pandia.ru/text/78/516/images/image231_4.gif" width="58" height="25 src=">.gif" width="203" height="25 src=">.

Правая часть заданного в примере 3 уравнения имеет специальный вид: f(x) https://pandia.ru/text/78/516/images/image235_3.gif" width="50" height="25 src=">.gif" width="55" height="25 src=">.gif" width="229" height="25 src=">.

Для определения https://pandia.ru/text/78/516/images/image240_2.gif" width="11" height="25 src=">.gif" width="43" height="25 src="> и подставляем в заданное уравнение:

Приводя подобные члены, приравнивая коэффициенты при https://pandia.ru/text/78/516/images/image245_2.gif" width="46" height="25 src=">.gif" width="100" height="25 src=">.

Окончательно общее решение заданного уравнения имеет вид: https://pandia.ru/text/78/516/images/image249_2.gif" width="281" height="25 src=">.gif" width="47" height="25 src=">.gif" width="10" height="25 src="> соответственно, причем один из этих многочленов может равняться нулю. Укажем вид частного решения в этом общем случае.

а) Если число https://pandia.ru/text/78/516/images/image255_2.gif" width="605" height="51">, (7.2)

где https://pandia.ru/text/78/516/images/image257_2.gif" width="121" height="25 src=">.

б) Если число https://pandia.ru/text/78/516/images/image210_5.gif" width="80" height="25 src=">, то частное решение лнду будет иметь вид:

https://pandia.ru/text/78/516/images/image259_2.gif" width="17" height="25 src=">. В выражении (7..gif" width="121" height="25 src=">.

Пример 4. Указать вид частного решения для уравнения

https://pandia.ru/text/78/516/images/image262_2.gif" width="129" height="25 src=">..gif" width="95" height="25 src=">. Общее решение лоду имеет вид:

https://pandia.ru/text/78/516/images/image266_2.gif" width="183" height="25 src=">..gif" width="42" height="25 src=">..gif" width="36" height="25 src=">.gif" width="351" height="25 src=">.

Далее коэффициенты https://pandia.ru/text/78/516/images/image273_2.gif" width="34" height="25 src=">.gif" width="42" height="28 src="> есть частное решение для уравнения с правой частью f1(x), а Вариация" href="/text/category/variatciya/" rel="bookmark">вариации произвольных постоянных (метод Лагранжа).

Непосредственное нахождение частного решения лнду, кроме случая уравнения с постоянными коэффициентами, причем со специальными свободными членами, представляет большие трудности. Поэтому для нахождения общего решения лнду обычно применяют метод вариации произвольных постоянных, который всегда дает возможность найти общее решение лнду в квадратурах, если известна фундаментальная система решений соответствующего однородного уравнения. Этот метод состоит в следующем.

Согласно вышеизложенному, общее решение линейного однородного уравнения:

https://pandia.ru/text/78/516/images/image278_2.gif" width="46" height="25 src=">.gif" width="51" height="25 src="> – не постоянные, а некоторые, пока неизвестные, функции от f(x). . нужно брать из интервала. В действительности, в этом случае определитель Вронского отличен от нуля во всех точках интервала, т. е. во всем пространстве – комплексный корень характеристического уравнения..gif" width="20" height="25 src="> линейно независимых частных решений вида:

В формуле общего решения этим корнем соответствует выражение вида.

Основы решения линейных неоднородных дифференциальных уравнений второго порядка (ЛНДУ-2) с постоянными коэффициентами (ПК)

ЛНДУ 2-го порядка с постоянными коэффициентами $p$ и $q$ имеет вид $y""+p\cdot y"+q\cdot y=f\left(x\right)$, где $f\left(x\right)$ - непрерывная функция.

В отношении ЛНДУ 2-го с ПК справедливы два следующих утверждения.

Предположим, что некоторая функция $U$ является произвольным частным решением неоднородного дифференциального уравнения. Предположим также, что некоторая функция $Y$ является общим решением (ОР) соответствующего линейного однородного дифференциального уравнения (ЛОДУ) $y""+p\cdot y"+q\cdot y=0$. Тогда ОР ЛНДУ-2 равно сумме указанных частного и общего решений, то есть $y=U+Y$.

Если правая часть ЛНДУ 2-го порядка представляет собой сумму функций, то есть $f\left(x\right)=f_{1} \left(x\right)+f_{2} \left(x\right)+...+f_{r} \left(x\right)$, то сначала можно найти ЧР $U_{1} ,U_{2} ,...,U_{r} $, которые соответствуют каждой из функций $f_{1} \left(x\right),f_{2} \left(x\right),...,f_{r} \left(x\right)$, а уже после этого записать ЧР ЛНДУ-2 в виде $U=U_{1} +U_{2} +...+U_{r} $.

Решение ЛНДУ 2-го порядка с ПК

Очевидно, что вид того или иного ЧР $U$ данного ЛНДУ-2 зависит от конкретного вида его правой части $f\left(x\right)$. Простейшие случаи поиска ЧР ЛНДУ-2 сформулированы в виде четырех следующих правил.

Правило № 1.

Правая часть ЛНДУ-2 имеет вид $f\left(x\right)=P_{n} \left(x\right)$, где $P_{n} \left(x\right)=a_{0} \cdot x^{n} +a_{1} \cdot x^{n-1} +...+a_{n-1} \cdot x+a_{n} $, то есть называется многочленом степени $n$. Тогда его ЧР $U$ ищут в виде $U=Q_{n} \left(x\right)\cdot x^{r} $, где $Q_{n} \left(x\right)$ - другой многочлен той же степени, что и $P_{n} \left(x\right)$, а $r$ - количество корней характеристического уравнения соответствующего ЛОДУ-2, равных нулю. Коэффициенты многочлена $Q_{n} \left(x\right)$ находят методом неопределенных коэффициентов (НК).

Правило № 2.

Правая часть ЛНДУ-2 имеет вид $f\left(x\right)=e^{\alpha \cdot x} \cdot P_{n} \left(x\right)$, где $P_{n} \left(x\right)$ представляет собой многочлен степени $n$. Тогда его ЧР $U$ ищут в виде $U=Q_{n} \left(x\right)\cdot x^{r} \cdot e^{\alpha \cdot x} $, где $Q_{n} \left(x\right)$ - другой многочлен той же степени, что и $P_{n} \left(x\right)$, а $r$ - количество корней характеристического уравнения соответствующего ЛОДУ-2, равных $\alpha $. Коэффициенты многочлена $Q_{n} \left(x\right)$ находят методом НК.

Правило № 3.

Правая часть ЛНДУ-2 имеет вид $f\left(x\right)=a\cdot \cos \left(\beta \cdot x\right)+b\cdot \sin \left(\beta \cdot x\right)$, где $a$, $b$ и $\beta $ - известные числа. Тогда его ЧР $U$ ищут в виде $U=\left(A\cdot \cos \left(\beta \cdot x\right)+B\cdot \sin \left(\beta \cdot x\right)\right)\cdot x^{r} $, где $A$ и $B$ - неизвестные коэффициенты, а $r$ - количество корней характеристического уравнения соответствующего ЛОДУ-2, равных $i\cdot \beta $. Коэффициенты $A$ и $B$ находят методом НК.

Правило № 4.

Правая часть ЛНДУ-2 имеет вид $f\left(x\right)=e^{\alpha \cdot x} \cdot \left$, где $P_{n} \left(x\right)$ - многочлен степени $n$, а $P_{m} \left(x\right)$ - многочлен степени $m$. Тогда его ЧР $U$ ищут в виде $U=e^{\alpha \cdot x} \cdot \left\cdot x^{r} $, где $Q_{s} \left(x\right)$ и $R_{s} \left(x\right)$ - многочлены степени $s$, число $s$ - максимальное из двух чисел $n$ и $m$, а $r$ - количество корней характеристического уравнения соответствующего ЛОДУ-2, равных $\alpha +i\cdot \beta $. Коэффициенты многочленов $Q_{s} \left(x\right)$ и $R_{s} \left(x\right)$ находят методом НК.

Метод НК состоит в применении следующего правила. Для того чтобы найти неизвестные коэффициенты многочлена, которые входят в состав частного решения неоднородного дифференциального уравнения ЛНДУ-2, необходимо:

  • подставить ЧР $U$, записанное в общем виде, в левую часть ЛНДУ-2;
  • в левой части ЛНДУ-2 выполнить упрощения и сгруппировать члены с одинаковыми степенями $x$;
  • в полученном тождестве приравнять коэффициенты при членах с одинаковыми степенями $x$ левой и правой частей;
  • решить полученную систему линейных уравнений относительно неизвестных коэффициентов.

Пример 1

Задача: найти ОР ЛНДУ-2 $y""-3\cdot y"-18\cdot y=\left(36\cdot x+12\right)\cdot e^{3\cdot x} $. Найти также ЧР, удовлетворяющее начальным условиям $y=6$ при $x=0$ и $y"=1$ при $x=0$.

Записываем соответствующее ЛОДУ-2: $y""-3\cdot y"-18\cdot y=0$.

Характеристическое уравнение: $k^{2} -3\cdot k-18=0$. Корни характеристического уравнения: $k_{1} =-3$, $k_{2} =6$. Эти корни действительны и различны. Таким образом, ОР соответствующего ЛОДУ-2 имеет вид: $Y=C_{1} \cdot e^{-3\cdot x} +C_{2} \cdot e^{6\cdot x} $.

Правая часть данного ЛНДУ-2 имеет вид $\left(36\cdot x+12\right)\cdot e^{3\cdot x} $. В ней необходимо рассматривать коэффициент показателя степени экспоненты $\alpha =3$. Этот коэффициент не совпадает ни с одним из корней характеристического уравнения. Поэтому ЧР данного ЛНДУ-2 имеет вид $U=\left(A\cdot x+B\right)\cdot e^{3\cdot x} $.

Будем искать коэффициенты $A$, $B$ методом НК.

Находим первую производную ЧР:

$U"=\left(A\cdot x+B\right)^{{"} } \cdot e^{3\cdot x} +\left(A\cdot x+B\right)\cdot \left(e^{3\cdot x} \right)^{{"} } =$

$=A\cdot e^{3\cdot x} +\left(A\cdot x+B\right)\cdot 3\cdot e^{3\cdot x} =\left(A+3\cdot A\cdot x+3\cdot B\right)\cdot e^{3\cdot x} .$

Находим вторую производную ЧР:

$U""=\left(A+3\cdot A\cdot x+3\cdot B\right)^{{"} } \cdot e^{3\cdot x} +\left(A+3\cdot A\cdot x+3\cdot B\right)\cdot \left(e^{3\cdot x} \right)^{{"} } =$

$=3\cdot A\cdot e^{3\cdot x} +\left(A+3\cdot A\cdot x+3\cdot B\right)\cdot 3\cdot e^{3\cdot x} =\left(6\cdot A+9\cdot A\cdot x+9\cdot B\right)\cdot e^{3\cdot x} .$

Подставляем функции $U""$, $U"$ и $U$ вместо $y""$, $y"$ и $y$ в данное ЛНДУ-2 $y""-3\cdot y"-18\cdot y=\left(36\cdot x+12\right)\cdot e^{3\cdot x}. $ При этом, поскольку экспонента $e^{3\cdot x} $ входит как множитель во все составляющие, то её можно опустить. Получаем:

$6\cdot A+9\cdot A\cdot x+9\cdot B-3\cdot \left(A+3\cdot A\cdot x+3\cdot B\right)-18\cdot \left(A\cdot x+B\right)=36\cdot x+12.$

Выполняем действия в левой части полученного равенства:

$-18\cdot A\cdot x+3\cdot A-18\cdot B=36\cdot x+12.$

Применяем метод НК. Получаем систему линейных уравнений с двумя неизвестными:

$-18\cdot A=36;$

$3\cdot A-18\cdot B=12.$

Решение этой системы таково: $A=-2$, $B=-1$.

ЧР $U=\left(A\cdot x+B\right)\cdot e^{3\cdot x} $ для нашей задачи выглядит следующим образом: $U=\left(-2\cdot x-1\right)\cdot e^{3\cdot x} $.

ОР $y=Y+U$ для нашей задачи выглядит следующим образом: $y=C_{1} \cdot e^{-3\cdot x} +C_{2} \cdot e^{6\cdot x} +\left(-2\cdot x-1\right)\cdot e^{3\cdot x} $.

С целью поиска ЧР, удовлетворяющего заданным начальным условиям, находим производную $y"$ ОР:

$y"=-3\cdot C_{1} \cdot e^{-3\cdot x} +6\cdot C_{2} \cdot e^{6\cdot x} -2\cdot e^{3\cdot x} +\left(-2\cdot x-1\right)\cdot 3\cdot e^{3\cdot x} .$

Подставляем в $y$ и $y"$ начальные условия $y=6$ при $x=0$ и $y"=1$ при $x=0$:

$6=C_{1} +C_{2} -1; $

$1=-3\cdot C_{1} +6\cdot C_{2} -2-3=-3\cdot C_{1} +6\cdot C_{2} -5.$

Получили систему уравнений:

$C_{1} +C_{2} =7;$

$-3\cdot C_{1} +6\cdot C_{2} =6.$

Решаем её. Находим $C_{1} $ по формуле Крамера, а $C_{2} $ определяем из первого уравнения:

$C_{1} =\frac{\left|\begin{array}{cc} {7} & {1} \\ {6} & {6} \end{array}\right|}{\left|\begin{array}{cc} {1} & {1} \\ {-3} & {6} \end{array}\right|} =\frac{7\cdot 6-6\cdot 1}{1\cdot 6-\left(-3\right)\cdot 1} =\frac{36}{9} =4; C_{2} =7-C_{1} =7-4=3.$

Таким образом, ЧР данного дифференциального уравнения имеет вид: $y=4\cdot e^{-3\cdot x} +3\cdot e^{6\cdot x} +\left(-2\cdot x-1\right)\cdot e^{3\cdot x} $.

Линейным дифференциальным уравнением второго порядка называется уравнение вида

y "" + p (x )y " + q (x )y = f (x ) ,

где y - функция, которую требуется найти, а p (x ) , q (x ) и f (x ) - непрерывные функции на некотором интервале (a, b ) .

Если правая часть уравнения равна нулю (f (x ) = 0 ), то уравнение называется линейным однородным уравнением . Таким уравнениям и будет в основном посвящена практическая часть этого урока. Если же правая часть уравнения не равна нулю (f (x ) ≠ 0 ), то уравнение называется .

В задачах от нас требуется разрешить уравнение относительно y "" :

y "" = −p (x )y " − q (x )y + f (x ) .

Линейные дифференциальные уравнения второго порядка имеют единственное решение задачи Коши .

Линейное однородное дифференциальное уравнение второго порядка и его решение

Рассмотрим линейное однородное дифференциальное уравнение второго порядка:

y "" + p (x )y " + q (x )y = 0 .

Если y 1 (x ) и y 2 (x ) - частные решения этого уравнения, то верны следующие высказывания:

1) y 1 (x ) + y 2 (x ) - также является решением этого уравнения;

2) Cy 1 (x ) , где C - произвольная постоянная (константа), также является решением этого уравнения.

Из этих двух высказываний следует, что функция

C 1 y 1 (x ) + C 2 y 2 (x )

также является решением этого уравнения.

Возникает справедливый вопрос: не является ли это решение общим решением линейного однородного дифференциального уравнения второго порядка , то есть таким решением, в котором при различных значениях C 1 и C 2 можно получить все возможные решения уравнения?

Ответ на этот вопрос следуюший: может, но при некотором условии. Это условие о том, какими свойствами должны обладать частные решения y 1 (x ) и y 2 (x ) .

И это условие называется условием линейной независимости частных решений.

Теорема . Функция C 1 y 1 (x ) + C 2 y 2 (x ) является общим решением линейного однородного дифференциального уравнения второго порядка, если функции y 1 (x ) и y 2 (x ) линейно независимы.

Определение . Функции y 1 (x ) и y 2 (x ) называются линейно независимыми, если их отношение является константой, отличной от нуля:

y 1 (x )/y 2 (x ) = k ; k = const ; k ≠ 0 .

Однако установить по определению, являются ли эти функции линейно независимыми, часто очень трудоёмко. Существует способ установления линейной независимости с помощью определителя Вронского W (x ) :

Если определитель Вронского не равен нулю, то решения - линейно независимые . Если определитель Вронского равен нулю, то решения - линейно зависимымые.

Пример 1. Найти общее решение линейного однородного дифференциального уравнения .

Решение. Интегрируем дважды и, как легко заметить, чтобы разность второй производной функции и самой функции была равна нулю, решения должны быть связаны с экспонентой, производная которой равна ей самой. То есть частными решениями являются и .

Так как определитель Вронского

не равен нулю, то эти решения линейно независимы. Следовательно, общее решение данного уравнения можно записать в виде

.

Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами: теория и практика

Линейным однородным дифференциальным уравнением второго порядка с постоянными коэффициентами называется уравнение вида

y "" + py " + qy = 0 ,

где p и q - постоянные величины.

На то, что это уравнение второго порядка, указывает наличие второй производной от искомой функции, а на его однородность - нуль в правой части. Постоянными коэффициентами называются уже упомянутые выше величины.

Чтобы решить линейное однородное дифференциальное уравнение второго порядка с постоянными коэффициентами , нужно сначала решить так называемое характеристическое уравнение вида

k ² + pq + q = 0 ,

которое, как видно, является обычным квадратным уравнением .

В зависимости от решения характеристического уравнения возможны три различных варианта решения линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами , которые сейчас разберём. Для полной определённости будем считать, что все частные решения прошли проверку определителем Вронского и он во всех случаях не равен нулю. Сомневающиеся, впрочем, могут проверить это самостоятельно.

Корни характеристического уравнения - действительные и различные

Иными словами, . В этом случае решение линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами имеет вид

.

Пример 2. Решить линейное однородное дифференциальное уравнение

.

Пример 3. Решить линейное однородное дифференциальное уравнение

.

Решение. Характеристическое уравнение имеет вид , его корни и - вещественные и различные. Соответствующие частные решения уравнения: и . Общее решение данного дифференциального уравения имеет вид

.

Корни характеристического уравения - вещественные и равные

То есть, . В этом случае решение линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами имеет вид

.

Пример 4. Решить линейное однородное дифференциальное уравнение

.

Решение. Характеристическое уравнение имеет равные корни . Соответствующие частные решения уравнения: и . Общее решение данного дифференциального уравения имеет вид

Пример 5. Решить линейное однородное дифференциальное уравнение

.

Решение. Характеристическое уравнение имеет равные корни . Соответствующие частные решения уравнения: и . Общее решение данного дифференциального уравения имеет вид

 


Читайте:



Завершился вывод войск ссср из афганистана

Завершился вывод войск ссср из афганистана

В 1987 году в Афганистане начала осуществляться политика национального примирения, принятая и одобренная на Пленуме ЦК НДПА в декабре 1986 года....

Новое направление: инноватика Сложно ли учиться на инноватике

Новое направление: инноватика Сложно ли учиться на инноватике

Предоставляют массу возможностей для выбора профессионального направления. Многие из предметов и направлений обозначены достаточно непонятными...

К чему снится племянница

К чему снится племянница

Учеными было установлено, что чаще всего, людям снится о любимых родственниках сон. Племянник, привидевшийся во время ночного отдыха, может...

Репейник: толкование сновидения

Репейник: толкование сновидения

Сонник репейник толкует как символ стремления к особой защищенности от возможных неприятностей. Сон, в котором вы видели одиноко стоящий куст,...

feed-image RSS